Chemical Kinetics And Radioactivity

RATE/VELOCITY OF CHEMICAL REACTION:

Rate $=\frac{\Delta \mathrm{c}}{\Delta \mathrm{t}}=\frac{\mathrm{mol} / \text { lit. }}{\mathrm{sec}}=\mathrm{mol} \mathrm{lit}^{-1}$ time $^{-1}=\mathrm{mol} \mathrm{dm}^{-3}$ time $^{-1}$

Types of Rates of chemical reaction :

For a reaction $\mathrm{R} \longrightarrow \mathrm{P}$

Average rate $=\frac{\text { Total } \text { change in concentration }}{\text { Total time taken }}$

$\mathrm{R}_{\text {instantaneous }}=\lim _{\mathrm{t} \rightarrow 0}\left[\frac{\Delta \mathrm{c}}{\Delta \mathrm{t}}\right]=\frac{\mathrm{dc}}{\mathrm{dt}}=-\frac{\mathrm{d}[\mathrm{R}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{P}]}{\mathrm{dt}}$

RATE LAW (DEPENDENCE OF RATE ON CONCENTRATION OF REACTANTS):

Rate $=K$ $(conc.)^{\text {order }}$ - differential rate equation or rate expression

Where $\mathrm{K}=$ Rate constant = specific reaction rate $=$ rate of reaction when concentration is unity

unit of $\mathrm{K}=(\text { conc })^{1-\text { order }}$ time $^{-1}$

Order of reaction:

$m_{1}A + m_{2}B \longrightarrow$ products

$R \propto[A]^{p}[B]^{q} \quad$ Where $p$ may or may not be equal to $m_{1}$ & similarly $q$ may or may not be equal to $m_{2}$.

$p$ is order of reaction with respect to reactant $A$ and $q$ is order of reaction with respect to reactant $B$ and $(p+q)$ is overall order of the reaction.

INTEGRATED RATE LAWS:

$C_0 \text{ or ‘a’ is initial concentration and } C_1 \text{ or (a - x ) }\text { is concentration at time} ’t’$

(a) zero order reactions:

$\quad\quad$ Rate $=\mathrm{k}[\text { conc. }]^{0}=$ constant

$\quad\quad$ Rate $= k = \frac{C_0 - C_1}{’t’}\quad or \quad C_1= C_0-kt$

$\quad\quad$ Unit of $K=\mathrm{mol} \quad \mathrm{lit}^{-1} \mathrm{sec}^{-1}$, Time for completion $=\frac{\mathrm{C}_{0}}{\mathrm{k}}$

$\quad\quad$ at $t_{1 / 2}, C_{t}=\frac{C_{0}}{2}, \quad so \quad kt_{1 / 2}=\frac{C_{0}}{2}$

$\quad\quad$ $\rightarrow t_{1 / 2}=\frac{C_{0}}{2k} \quad \therefore t_{1 / 2} \propto C_{0}$

(b) First Order Reactions:

$\quad\quad$ (i) Let a $1^{\text {st }}$ order reaction is, $A \longrightarrow$ Products

$\quad\quad$ $t=\frac{2.303}{k} \log \frac{a}{a-x} \quad$ or $\quad k=\frac{2.303}{t} \log \frac{C_{0}}{C_{t}}$

$\quad\quad$ $\Rightarrow \quad \mathrm{t}_{1 / 2}=\frac{\ell \mathrm{n} 2}{\mathbf{k}}=\frac{0.693}{\mathbf{k}}=$ Independent of initial concentration.

$\quad\quad$ $t_{Avg.} = \frac{1}{k} = 1.44\quad t_{1/2}.$

Graphical Representation:

$t=-\frac{2.303}{k} \log C_{t}+\frac{2.303}{k} \log C_{0}$

or $\log a / a-x$

(c) Second order reaction:

$\quad\quad$ $2^{\text {nd }}$ order Reactions

$\quad\quad$ Two types

$\quad\quad$ $A+A \longrightarrow \text { products }$

$\quad\quad$ $a \quad a $

$\quad\quad$ $(a-x)(a-x) $

$\quad\quad$ $\therefore \frac{d x}{d t}=k(a-x)^{2} $

$\quad\quad$ $\Rightarrow \frac{1}{(a-x)}-\frac{1}{a}=k t $

$\quad\quad$ $A+B \longrightarrow \text { products. }$

$\quad\quad$ $ a \quad b $

$\quad\quad$ $a-x \quad b-x $

$\quad\quad$ $\frac{d x}{d t}=k(a-x)(b-x)$

$\quad\quad$ $ k=\frac{2.303}{t(a-b)} \log \frac{b(a-x)}{a(b-x)}$

METHODS TO DETERMINE ORDER OF A REACTION

(a) Initial rate method:

$$ r=k[A]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}[\mathrm{C}]^{\mathrm{c}} \quad \text { if } \quad[\mathrm{B}]=\text { constant } $$

$$ \quad \quad\quad\quad\quad\quad\quad\quad\quad\quad [C]=\text { constant } $$

then for two different initial concentrations of A we have

$r_{0_{1}} = k[A_0]_1^{a},$

$r_{0_{2}} = k[A_0]_2^{a}$

$\implies \frac{r_{0_1}}{r_{0_2}} = \big(\frac{[A_0]_1}{[A_0]_2}\big)^a$

(b) Using integrated rate law :

It is method of trial and error.

(c) Method of half lives :

for $\mathrm{n}^{\text {th }}$ order reaction $\quad t_{1 / 2} \propto \frac{1}{\left[R_{0}\right]^{n-1}}$

(d) Ostwald Isolation Method :

rate $=k[A]^{a}[B]^{b}[C]^{c}=k_{0}[A]^{a}$

METHODS TO MONITOR THE PROGRESS OF THE REACTION :

(a) Progress of gaseous reaction can be monitored by measuring total pressure at a fixed volume & temperature or by measuring total volume of mixture under constant pressure and temperature.

$\therefore \quad k = \frac{2.303}{t} log\frac{P_0(n-1)}{nP_0-P_t}$

{Formula is not applicable when $\mathrm{n}=1$, the value of $\mathrm{n}$ can be fractional also.}

(b) By titration method :

1.$\quad \therefore a \propto V_{0} \quad a-x \propto V_{t}$

$ k=\frac{2.303}{t} \log \frac{V_{0}}{V_{t}}$

2.Study of acid hydrolysis of an ester.

$k= \frac{2.303}{t}log\frac{V_{\infty}-V_0}{V_{\infty}-V_t}$

(c) By measuring optical rotation produced by the reaction mixture :

$k=\frac{2.303}{\mathrm{t}} \log \left(\frac{\theta_{0}-\theta_{\infty}}{\theta_{\mathrm{t}}-\theta_{\infty}}\right)$

EFFECT OF TEMPERATURE ON RATE OF REACTION

T.C. $=\frac{K_{t+10}}{K_t} \approx 2$ to 3 ( for most of the reactions)

Arrhenius theory of reaction rate

$E_P > E_r \rightarrow$ endothermic

$E_P < E_r \rightarrow$ exothermic

$\Delta H=\left(E_{p}-E_{r}\right)=$ enthalpy change

$\Delta H=E_{af}-E_{ab}$

$E_{threshold} = E_{af} + E_r = E_b + E_p$

Arrhenius equation

$ k = Ae^{-E_{a}RT} \quad r=k[conc.]^{order}$

$\frac{d ln k}{dT}=\frac{E_a}{RT^{2}}$

$\log k=(-\frac{Ea}{2.303 R}) \frac{1}T+\log A$

If $k_1 \quad and \quad k_2$ be the rate constant of a reaction at two different temperature $T_1 \quad and \quad T_2$ respectively, then we have

$$ \log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 R} \left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) $$

  • lnk= ln $A-\frac{E_a}{RT}$

$\mathrm{E}_{\mathrm{a}} \geq \mathrm{O}$

  • $\mathrm{T} \rightarrow \infty, \mathrm{K} \rightarrow \mathrm{A}.$


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें