Gaseous State

Temperature Scale:

$ \frac{C-O}{100-0}=\frac{K-273}{373-273}=\frac{F-32}{212-32}$ = $\frac{R-R(O)}{R(100)-R(O)} $

where R= Temp. on unknown scale.

Boyle’s law and measurement of pressure:

At constant temperature, $\mathrm{V}$ $\propto$ $\frac{1}{\mathrm{P}}$

$ \quad\quad \quad \quad \quad \quad \quad \quad \quad P_1 V_1 = P_2 V_2$

Charles law :

At constant pressure, $\quad V \alpha T \quad $ or $\quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$

Gay-Lussac’s law:

At constant volume,

$\mathrm{P}$ $\propto$ $\mathrm{T} \quad \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \rightarrow$ temp on absolute scale

Ideal gas Equation:

$$ P V=n R T $$

$$ P V=\frac{w}{m} R T \text { or } P=\frac{d}{m} R T \text { or } P m=d R T $$

Daltons law of partial pressure:

$\quad P_{1}=\frac{n_{1} R T}{v}, \quad P_{2}=\frac{n_{2} R T}{v}, \quad P_{3}=\frac{n_{3} R T}{v}$ and so on.

$\quad $ Total pressure = $ P_1 + P_2 + P_3….$

$\quad $ Partial pressure $=$ mole fraction $X$ Total pressure.

Amagat’s law of partial volume:

$$ V=V_{1}+V_{2}+V_{3}+\ldots \ldots $$

Average molecular mass of gaseous mixture:

$$ M_{\text {mix }}=\frac{\text { Total mass of mixture }}{\text { Total no. of moles in mixture }} =\frac{n_{1} M_{1}+n_{2} M_{2}+n_{3} M_{3}}{n_{1}+n_{2}+n_{3}}$$

Graham’s Law

Rate of diffusion $r \propto \frac{1}{\sqrt{d}} ; \quad d=$ density of gas

$$ \frac{r_{1}}{r_{2}}=\frac{\sqrt{d_{2}}}{\sqrt{d_{1}}}=\frac{\sqrt{M_{2}}}{\sqrt{M_{1}}}=\sqrt{\frac{V \cdot D_{2}}{V \cdot D_{1}}} $$

Kinetic Theory of Gases

$\mathrm{PV}=\frac{1}{3} \mathrm{mN} \overline{\mathrm{U}^{2}} \quad \text{Kinetic equation of gases}$

Average K.E. for one mole $=N_{A}\left(\frac{1}{2} m \overline{U^{2}}\right)=\frac{3}{2} K N_{A} T=\frac{3}{2} R T$

Root mean square speed

$U_{r m s}=\sqrt{\frac{3 R T}{M}} \quad$ molar mass must be in $\mathrm{kg} / \mathrm{mole}$

Average speed

$ U_{av} = U_{1}+U_{2}+U_{3}+ \ldots \ldots \mathrm{U}_{\mathrm{N}}$

$U_{\text {avg. }}=\sqrt{\frac{8 R T}{\pi M}}=\sqrt{\frac{8 K T}{\pi m}} \quad K$ is Boltzmann constant

Most probable speed

$U_{MPS } =\sqrt{\frac{2 R T}{M}}=\sqrt{\frac{2 K T}{m}}$

Van der Waal’s equation :

$ \left(P+\frac{a n^{2}}{v^{2}}\right)(v-n b)=n R T $

Critical constants:

$\mathrm{V}_{\mathrm{c}}=3 \mathrm{~b}$,

$\mathrm{P}_{\mathrm{c}}=\frac{\mathrm{a}}{27 \mathrm{~b}^{2}}$,

$\mathrm{~T}_{\mathrm{C}}=\frac{8 \mathrm{a}}{27 \mathrm{Rb}}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें