Ionic Equilibrium

OSTWALD DILUTION LAW :

  • Dissociation constant of weak acid $\left(\mathrm{K}_{\mathrm{a}}\right)$,

$\quad \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{[\mathrm{C} \alpha][\mathrm{C} \alpha]}{\mathrm{C}(1-\alpha)}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha}$

$\quad \quad $ If $\alpha < < 1, \text{ then } 1 - \alpha \cong 1 \text{ or }$

$\quad \quad K_a = c \alpha^2 \text{ or } \alpha = \sqrt{\frac{K_a}{C}} = \sqrt{K_a \times V} $

  • Similarly for a weak base, $\alpha=\sqrt{\frac{K_{b}}{C}}$. Higher the value of $K_{a} / K_{b}$, strong is the acid / base.

Acidity and $\mathrm{pH}$ scale :

$\therefore \quad pH=-\log a_{H^+} $ (where $ a_{H^+} $ is the activity of $H^+$ ions = molar concentration for dilute solution).

$\mathrm{pH}$ can also be negative or $>14$

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] ; \quad\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$

$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] ; \quad\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}$

$\mathrm{pK_a}=-\log \mathrm{K_a} ; \quad \mathrm{K_a}=10^{-\mathrm{pK_a}}$

$\mathrm{pK_b}=-\log \mathrm{K_b} ; \quad \mathrm{K_b}=10^{-\mathrm{pK_b}}$

PROPERTIES OF WATER :

1. In pure water $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] \quad$ so it is Neutral.

2. Molar concentration $/$ Molarity of water $=55.56 \mathrm{M}$

3. Ionic product of water $\left(\mathrm{K}_{\mathrm{w}}\right)$ :

$\quad \quad\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$ at $25^{\circ}$ (experimentally)

$\quad \quad\mathrm{pH}=7=\mathrm{pOH} \quad \Rightarrow \quad$ neutral

$\quad \quad\mathrm{pH}<7$ or $\mathrm{pOH}>7 \quad \Rightarrow \quad$ acidic

$\quad \quad\mathrm{pH}>7$ or $\mathrm{pOH}<7 \quad \Rightarrow \quad$ Basic

4. Degree of dissociation of water :

$\quad \quad\alpha=\frac{\text { no. of moles dissociated }}{\text { Total No. of molesinitiallytaken }}=\frac{10^{-7}}{55.55}=$

$\quad \quad 18 \times 10^{-10}$ or $1.8 \times 10^{-7} $%

5. Absolute dissociation constant of water :

$ \quad \quad K_a = K_b =\frac{[H^+][OH^-]}{[H_{2} O]}=\frac{10^{-7} \times 10^{-7}}{55.55}=1.8 \times 10^{-16}$

$\quad \quad pK_a = pK_b =-\log(1.8 \times 10^{-16})=16-\log 1.8=15.74 $

$\quad \quad K_a \times K_{b} =\left[H^{+}][OH^{-}\right]=K_{w}$

$\quad \quad \Rightarrow$ for a conjugate acid- base pairs

$\quad \quad pK_a+pK_b=pK_w=14 \quad at \quad 25^{\circ}C.$.

$\quad \quad p K_{a}$ of ${H}_{3}{O}^{+}$ ions $ =-1.74$

$\quad \quad p K_{b}$ of $\mathrm{OH}^{-}$ ions $=-1.74$.

pH Calculations of Different Types of Solutions:

(a) Strong acid solution :

$\quad$ (i) If concentration is greater than $10^{-6} \mathrm{M}$

$\quad$ In this case $\mathrm{H}^{+}$ ions coming from water can be neglected,

$\quad$(ii) If concentration is less than $10^{-6} \mathrm{M}$

$\quad$ In this case $\mathrm{H}^{+}$ ions coming from water cannot be neglected

(b) Strong base solution :

Using similar method as in part (a) calculate first $\left[\mathrm{OH}^{-}\right]$ and then use

$\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=10^{-14}$

(c) pH of mixture of two strong acids :

Number of $\mathrm{H}^{+}$ ions from I-solution $=N_1 V_1$

Number of $\mathrm{H}^{+}$ ions from II-solution $=N_2 V_2$

$$ [H^{+}]=N=\frac{N_1V_1 + N_2 V_2}{V_1+V_2} $$

(d) pH of mixture of two strong bases :

$$ [OH^{-}]=N=\frac{N_1V_1 + N_2 V_2}{V_1+V_2} $$

(e) $\mathrm{pH}$ of mixture of a strong acid and a strong base :

If $N_{1} V_{1}>N_{2} V_{2}$, then solution will be acidic in nature and

$$ [H^{+}]=N=\frac{N_1V_1 - N_2 V_2}{V_1+V_2} $$

If $N_{2} V_{2}>N_{1} V_{1}$, then solution will be basic in nature and

$$ [OH^{-}]=N=\frac{N_2 V_2 - N_1 V_1}{V_1+V_2} $$

(f) $\mathrm{pH}$ of a weak acid(monoprotic) solution :

$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{HA}]}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha}$

$if \quad \alpha «1 \Rightarrow(1-\alpha) \approx 1 \quad \Rightarrow \quad K_a \approx C \alpha^{2}$

$\Rightarrow \alpha = \sqrt{\frac{K_a}{C}} ( \text {is valid if } \alpha < 0.1 \text{ or } 10 % )$

On increasing the dilution

$\Rightarrow \mathrm{C} \downarrow \Rightarrow \alpha \uparrow \quad$ and $\left[\mathrm{H}^{+}\right] \downarrow \mathrm{pH} \uparrow$

RELATIVE STRENGTH OF TWO ACIDS :

$\frac{[H^{+}] \quad\text {furnished by I acid }} {[H^{+}] \quad\text {furnished by II acid }} = \frac{C_1 \alpha_{1}}{C_2 \alpha_{2}}=\sqrt{\frac{k_{a_1} c_1}{k_{a_2} c_2}}$

SALT HYDROLYSIS:

Salt of type of hydrolysis $ k_h $ $h $ $pH$
(a) weak acid & strong base anionic $ \frac{k_w}{k_a} \sqrt{\frac{k_w}{k_a C}}$ $ 7 + \frac{1}{2} pK_a + \frac{1}{2} \log C$
(b) strong acid & weak base cationic $ \frac{k_w}{k_b}$ $ \sqrt{\frac{k_w}{k_b C}}$ $ 7 - \frac{1}{2} pK_b$ - $\frac{1}{2} \log C $
(c) weak acid & weak base both $\frac{k_w}{k_a k_b} \sqrt{\frac{k_w}{k_a k_b}}$ $ 7 + \frac{1}{2} pK_a - \frac{1}{2} pK_b$
(d) Strong acid & strong base do not hydrolyzed pH = 7

Hydrolysis of polyvalent anions or cations

For $[Na_3 PO_4]=C$.

$K_{a1} \times K_{h3}=K_w$

$K_{a1} \times K_{h2}=K_w$

$K_{a3} \times K_{h1}=K_w$

Generally $\mathrm{pH}$ is calculated only using the first step Hydrolysis

$\mathrm{K}_{\mathrm{h} 1}=\frac{\mathrm{Ch}^{2}}{1-\mathrm{h}} \approx \mathrm{Ch}^{2}$

$h=\sqrt{\frac{K_{h_1}}{c}}$

$\Rightarrow\left[\mathrm{OH}^{-}\right]=\mathrm{ch}=\sqrt{\mathrm{K}_{\mathrm{h}_1} \times \mathrm{c}} $

$\Rightarrow[H^{+}]=\sqrt{\frac{K_W \times K_{a_3}}{C}}$

So $pH=\frac{1}{2}[pK_w + pK_{a_3} + \log C]$

BUFFER SOLUTION

(a) Acidic Buffer : e.g. $CH_3 COOH $ and $CH_3 COONa$. (weak acid and salt of its conjugate base).

$$ pH=\mathrm{pK}_{\mathrm{a}}+\log \frac{[\text { Salt }]}{[\text { Acid }]} \quad \text { [Henderson’s equation ]} $$

(b) Basic Buffer : e.g. $NH_4 OH + NH_4 Cl$. (weak base and salt of its conjugate acid).

$$ \mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { Salt }]}{[\text { Base }]} $$

SOLUBILITY PRODUCT

$\mathrm{K}_{\mathrm{SP}}=(\mathrm{xs})^{\mathrm{x}}(\mathrm{ys})^{\mathrm{y}}=\mathrm{x}^{\mathrm{x}} \cdot \mathrm{y}^{\mathrm{y}} \cdot(\mathrm{s})^{\mathrm{x}+\mathrm{y}}$

CONDITION FOR PRECIPITATION

If ionic product $ K_{I.P} > K_{SP}$ precipitation occurs,

if $K_{I.P}=K_{SP}$ saturated solution (precipitation just begins or is just prevented).

Indicators in AcID Base Titration

For most acid base titrations, it is possible to select indicators which exhibit colour change at $\mathrm{pH}$ close to the equivalence point.

Phenolpthalein

Phenolpthalein is a weak acid, therefore it does not dissociate in the acidic medium and remains in the unionised form, which is colourless.

$$\mathrm{HPh} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Ph}^{-}$$

  • In the acidic medium, equilibrium lies to the left.

  • In the alkaline medium, the ionisation of phenolphthalein increases considerably due to the constant removal of $\mathrm{H}^{+}$ions released from HPh by the $\mathrm{OH}^{-}$ions from the alkali. So the concentration of $\mathrm{Ph}^{-}$ion increases in the solution, which imparts pink colour to the solution. $$ \begin{array}{lll} \mathrm{HPh} & \rightleftarrows \mathrm{H}^{+}+\mathrm{Ph}^{-} \ \mathrm{NaOH} & \longrightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \ \mathrm{H}^{+}+\mathrm{OH}^{-} & \longrightarrow \mathrm{H}_2 \mathrm{O} \end{array} $$

  • For a weak acid vs strong alkali titration, phenolphthalein is the most suitable indicator. This is so because the last drop of added alkali brings the $\mathrm{pH}$ of the solution in the range in which phenolphthalein shows sharp colour change.

Methyl orange

It is a weak base and is yellow in colour in the unionised form.

Choice of Indicator
  • In the titration of strong acid and a weak base, methyl orange is chosen as indicator.
  • When titration between strong base and weak acid then phenolphthalein is a good indicator.
  • In the titration of strong acid versus strong base either Phenolpthalein or Methyl orange can be used as indicator
  • For the titration of weak acid vs weak base no indicator is available.


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें