Stoichiometry

Relative atomic mass (Ar)

$$R.A.M =\frac{\text { Mass of one atom of an element }}{\frac{1}{12} \times \text { mass of one carbon atom }}$$

$$ = \text {Total Number of nucleons}$$

Density:

$$ \text { Specific gravity }=\frac{\text { density of the substance }}{\text { density of water at } 4^{\circ} \mathrm{C}} $$

For gases :

$$ \text {Absolute density (mass/volume)} =\frac{\text { Molar mass of the gas }}{\text { Molar volume of the gas }}$$

$$\Rightarrow \rho=\frac{\mathrm{PM}}{\mathrm{RT}}$$

$$\text {Vapour density V.D.} =\frac{d_{\text {gas }}}{d_{H_{2}}}=\frac{P M_{\text {gas }} / R T}{P_{H_{2}} / R T}=\frac{M_{\text {gas }}}{M_{H_{2}}}=\frac{M_{\text {gas }}}{2} = V.D.$$

Mole-mole analysis :

,

Concentration terms :

Molarity (M) :

$$ \therefore \quad \text { Molarity }(\mathrm{M})=\frac{\mathrm{W} \times 1000}{(\text { Mol. wt of solute }) \times \mathrm{V}_{\text {in ml }}} $$

Molality (m) :

$$ Molality =\frac{\text{number of moles of solute} }{\text{mass of solvent in kg} }\times 1000 $$

$$ = \frac{1000 \times W_1}{M_1 \times w_2} $$

Mole fraction $(x)$ :

$\therefore \quad$ Mole fraction of solution $\left(\mathrm{x}_{1}\right)=\frac{\mathrm{n}}{\mathrm{n}+\mathrm{N}}$

$\therefore \quad$ Mole fraction of solvent $\left(\mathrm{x}_{2}\right)=\frac{\mathrm{N}}{\mathrm{n}+\mathrm{N}}$

$\quad \quad x_{1}+x_{2}=1$

% Calculation :

(i) %w/w = $\frac{\text { mass of solute in gm }}{\text { mass of solution in gm}} \times 100$

(ii) %w/v = $\frac{\text { mass of solute in gm}}{\text { Volume of solution in ml}} \times 100$

(iii) %v/v = $\frac{\text { Volume of solute in ml}}{\text { Volume of solution }} \times 100$

Conversions :

Mole fraction of solute into molarity of solution $M=\frac{x_{2} \rho \times 1000}{M_{1} x_{1}+M_{2} x_{2}}$

Molarity into mole fraction $ x_2 = \frac{M \times MM_1}{\rho \times 1000 - MM_2 \times M} $

Mole fraction into molality $m=\frac{x_{2} \times 1000}{(1 - x_{2}) M_{1}}$

Molality into mole fraction $ x_2 = \frac{mM_2}{1000 + mM_2} $

Molality into molarity $M=\frac{m \rho \times 1000}{1000+mM_2}$

Molarity into Molality $\mathrm{m}=\frac{\mathrm{M} \times 1000}{1000 \rho - \mathrm{M} \mathrm{M}_{2}}$

$M_{1}$ and $M_{2}$ are molar masses of solvent and solute. $\rho$ is density of solution $(\mathrm{gm} / \mathrm{mL})$

$M=$ Molarity (mole/lit.), $m=$ Molality (mole $/ \mathrm{kg}$ ), $x_{1}=$ Mole fraction of solvent, $x_{2}=$ Mole fraction of solute

Average/Mean atomic mass :

$$ A_{x}=\frac{a_{1} x_{1}+a_{2} x_{2}+\ldots . .+a_{n} x_{n}}{100} $$

Mean molar mass or molecular mass

$$ M_{\text {avg. }}=\frac{n_{1} M_{1}+n_{2} M_{2}+\ldots . . n_{n} M_{n}}{n_{1}+n_{2}+\ldots n_{n}} \quad \text { or }$$

$$\quad M_{\text {avg. }}=\frac{\sum_{j=1}^{j=n} n_{j} M_{j}}{\sum_{j=1}^{j=n} n_{j}} $$

Calculation of individual oxidation number :

Formula : Oxidation Number $=$ number of valence electrons - number of electrons assigned to the atom in the molecule

Concept of Equivalent weight/Mass:

For elements, equivalent weight (E)= $ \frac{\text { Atomic weight }}{\text { Valency } \text { factor }}$

For acid/base, $ \quad \mathrm{E}=\frac{\mathrm{M}}{\text { Acidity / Basicity }}$

Where $\mathrm{M}=$ Molar mass

For O.A/R.A, $ \quad E=\frac{M}{\text { no. of moles of } \mathrm{e}^{-} \text {gained /lost }}$

Equivalent weight (E) =$\frac{\text { Atomic or molecular weight }}{v . f .}$

(v.f. $=$ valency factor)

Concept of equivalent number

No. of equivalents of solute $=\frac{W t}{E q \cdot \text { wt. }}=\frac{W}{E}=\frac{W \cdot n}{M}$

No. of equivalents of solute $=$ No. of moles of solute $\times$ v.f.

Normality (N) :

Normality $(N)=\frac{\text { Number of equivalents of solute }}{\text { Volume of solution (in litres) }}$

Normality $=$ Molarity $\times$ v.f.

Calculation of valency Factor :

$\mathrm{n}$ -factor of acid $=$ basicity $=$ no. of $\mathrm{H}^{+}$ ion(s) furnished per molecule of the acid.

$\mathrm{n}$ -factor of base $=$ acidity $=$ no. of $\mathrm{OH}^{-}$ ion(s) furnished by the base per molecule.

At the equivalence point

$ \quad N_1 \ V_1 = N_2 \ V_2 $

$\quad n_{1} M_{1} V_{1}=n_{2} M_{2} V_{2}$

Volume strength of $ H_2 O_2 $ is defined as the volume of oxygen gas liberated at standard temperature and pressure (STP) by 1 litre of the solution.

$20V H_2 O_2 $ means one litre of this sample of $H_2 O_2$ on decomposition gives 20 lt. of $O_2$ gas at S.T.P.

Normality of $H_2O_2$ (N) = $\frac{ \text{Volume} \times \text{strength of } H_2O_2}{5.6}$

Molarity of $H_2O_2$ (N) = $\frac{ \text{Volume} \times \text{strength of } H_2O_2}{11.2}$

Measurement of Hardness :

Hardness in ppm $=\frac{\text { mass of } \mathrm{CaCO}_{3}}{\text { Total mass of water }} \times 10^{3}$

Calculation of available chlorine from a sample of bleaching powder :

% of $Cl_2$ = $\frac{3.55 \times x \times V(mL)}{W(g)} $ where $\mathrm{x}=$ molarity of sodium thiosulfate solution

and v=ml of hypo solution used in titration.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें