Thermodynamics

Thermodynamic processes

1. Isothermal process:

$T=$ constant

$\mathrm{dT}=0$

$\Delta \mathrm{T}=0$

2. Isochoric process:

$V=$ constant

$\mathrm{d} V=0$

$\Delta \mathrm{V}=0$

3. Isobaric process:

$P =$ constant

$\mathrm{dP}=0$

$\Delta \mathrm{P}=0$

4. Adiabatic process: $q=0$

or heat exchange with the surrounding $=0$ (zero)

IUPAC Sign convention about Heat and Work :

Work done on the system = Positive

Work done by the system $=$ Negative

$1^{\text {st }}$ Law of Thermodynamics

$\Delta U=\left(U_{2}-U_{1}\right)=q+w$

Law of equipartition of energy :

$U=\frac{f}{2} n R T \quad$ (only for ideal gas)

$\Delta \mathrm{E}=\frac{\mathrm{f}}{2} \mathrm{nR}(\Delta \mathrm{T})$

where $f=$ degrees of freedom for that gas. (Translational + Rotational)

$\mathrm{f}=3$ for monoatomic

$f =5$ for diatomic or linear polyatomic

$f=6$ for non - linear polyatomic

Calculation of heat $(q)$ :

Total heat capacity :

$$ \mathrm{C}_{\mathrm{T}}=\frac{\Delta \mathrm{q}}{\Delta \mathrm{T}}=\frac{\mathrm{dq}}{\mathrm{dT}}=\mathrm{J} /{ }^{\circ} \mathrm{C} $$

Molar heat capacity :

$$ C=\frac{\Delta q}{n\Delta T}=\frac{d q}{n d T}=J{mole^{-1}} K^{-1} $$

$$ C_{P}=\frac{\gamma R}{\gamma-1} $$

$$ C_{V}=\frac{R}{\gamma-1} $$

Specific heat capacity (s) :

$$ \mathrm{S}=\frac{\Delta \mathrm{q}}{\mathrm{m} \Delta \mathrm{T}}=\frac{\mathrm{dq}}{\mathrm{mdT}}=\mathrm{Jgm}^{-1} \mathrm{~K}^{-1} $$

WORK DONE (w) :

Isothermal reversible expansion/compression of an ideal gas :

$$ W = -nRT \ln (V_f / V_i) $$

Reversible and irreversible isochoric processes.

Since $d V=0$

So $d W=-P_{\text {ext }} \cdot d V=0$.

Reversible isobaric process :

$$ W=P\left(V_{f}-V_{i}\right) $$

Adiabatic reversible expansion :

$$ \Rightarrow T_2 ~V_2^{\gamma-1} = T_1 ~V_1^{\gamma-1} $$

Reversible Work :

$$ W = \frac{P_2 V_2 - P_1 V_1}{\gamma - 1} = \frac{nR(T_2 - T_1)}{\gamma - 1} $$

Irreversible Work :

$$ W = \frac{P_2 V_2 - P_1 V_1}{\gamma - 1} = \frac{nR(T_2 - T_1)}{\gamma - 1} $$

$$ = nC_v(T_2-T_1)= -P_{ext}(V_2-V_1) $$

and use $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$

Free expansion-Always going to be irrerversible and since $P_{\text {ext }}=0$

so $\mathrm{dW}=-\mathrm{P}_{\mathrm{ext}}$. $\mathrm{dV}=0$

If no heat is supplied $q=0$

then $\Delta \mathrm{E}=0 \quad$ so $\quad \Delta \mathrm{T}=0$.

Application of $I^{st}$ Law :

$\Delta U = \Delta Q + \Delta W $ $\Rightarrow \Delta W=-P \Delta V $

$\therefore \Delta U = \Delta Q - P\Delta V $

Constant volume process

Heat given at constant volume $=$ change in internal energy

$\therefore \mathrm{du}=(\mathrm{dq})_{\mathrm{v}}$

$\mathrm{du}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}$

$C_{v}=\frac{1}{n} \cdot \frac{d u}{d T}=\frac{f}{2} R$

Constant pressure process:

$$\mathrm{H} = Enthalpy \text {(state function and extensive property)}$$

$$\mathrm{H}=\mathrm{U}+\mathrm{PV}$$

$$ \Rightarrow C_{p}-C_{v}=R \text { (only for ideal gas) } $$

Second Law Of Thermodynamics :

$\Delta S_{universe} = \Delta S_{system} + \Delta S_{surrounding} > 0 $ for a spontaneous process.

Entropy (S):

$$ \Delta S_{system} = \int_{A}^{B} \frac{d q_{\text {rev }}}{T} $$

Entropy calculation for an ideal gas undergoing a process :

$$ \text{State A} \quad \xrightarrow[\Delta \mathrm{S}_{\mathrm{irr}}]{\mathrm{irr}} \quad \text{State B} $$

$ P_1, V_1, T_1 \quad \quad\quad \quad P_2, V_2, T_2 $

$\Delta S_{\text {system }}=nc_{v} \ln \frac{T_2}{T_1}+ nR \ ln \frac{V_2}{V_1}\quad $(only for an ideal gas)

Third Law Of Thermodynamics :

The entropy of perfect crystals of all pure elements & compounds is zero at the absolute zero of temperature.

Gibb’s free energy (G) : (State function and an extensive property)

$$ G_{system } = H_{system } - TS_{system } $$

Criteria of spontaneity :

(i) If $\Delta G_{\text {system }}$ is $(-\mathrm{ve})<0 \Rightarrow$ process is spontaneous

(ii) If $\Delta \mathrm{G}_{\text {system }}$ is $>0 \quad \quad \Rightarrow$ process is non spontaneous

(iii) If $\Delta G_{\text {system }}=0 \quad \quad \Rightarrow$ system is at equilibrium.

Physical interpretation of $\Delta \mathbf{G}:$

$\rightarrow$ The maximum amount of non-expansional (compression) work which can be performed.

$\Delta \mathrm{G}=\mathrm{dw}_{\text {non-exp }}=\mathrm{dH}-\mathrm{TdS}$.

Standard Free Energy Change $\left(\Delta \mathbf{G}^{\circ}\right)$

1. $\Delta \mathrm{G}^{\circ}=-2.303 \text{ RT} \log _{10} \mathrm{~K}$

2. At equilibrium $\Delta \mathrm{G}=0$.

3. The decrease in free energy $(-\Delta G)$ is given as :

$$ \quad \quad -\Delta G = W_{net}=2.303 \ nRT \ log_{10} \frac{V_2}{V_1} $$

4. $\Delta \mathrm{G}_{\mathrm{f}}^{0}$ for elemental state $=0$

5. $\Delta G_{f}^{0}=G_{\text {products }}^{0}-G_{\text {Reactants }}^{0}$

Thermochemistry :

Change in standard enthalpy

$ \Delta H^{0} = H_{m, 2}^{0}- H_{m, 1}^{0}$

heat added at constant pressure.

$=C_{P} \Delta T.$

If $ \ H_{products }>H_ {reactants } $

$\rightarrow \quad$ Reaction should be endothermic as we have to give extra heat to reactants to get these converted into products

and if $\ H_{products }>H_ {reactants } $

$\rightarrow \quad$ Reaction will be exothermic as extra heat content of reactants will be released during the reaction.

Enthalpy change of a reaction :

$ \Delta H_{reaction } = H_{products }>H_ {reactants }$

$ \Delta H_{reaction } = H_{products }^{0} > H_ {reactants }^{0}$

$ \quad \quad \quad = positive - endothermic $

$ \quad \quad \quad = negative - exothermic $

Temperature Dependence Of $\Delta \mathrm{H}$ : (Kirchoff’s equation):

For a constant pressure reaction

$\Delta H_{2}{ }^{0}=\Delta H_{1}{ }^{0}+\Delta C_{p}(T_2-T_1)$

where $\Delta C_{P}=C_{P}(products)-C_{P}(reactants).$

For a constant volume reaction

$$ \Delta E_{2}^{0}=\Delta E_{1}^{0}+\int \Delta C_{V}\cdot dT $$

Enthalpy of Reaction from Enthalpies of Formation :

The enthalpy of reaction can be calculated by

$v_{\mathrm{B}}$ is the stoichiometric coefficient.

Estimation of Enthalpy of a reaction from bond Enthalpies:

$ \Delta H $= (Enthalpy required to break reactants into gaseous atoms )$ - $

(Enthalpy released to form products from the gaseous atoms )

Resonance Energy :

$\Delta H_{resonance }^{0} $

$=\Delta H_{f, experimental}^{0}-\Delta H_{f,calclulated}^{0} $

$=\Delta H_{c,calclulated}^{0}-\Delta H_{c,experimental} ^{0} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें