Electrostatics

Coulomb Force Between Two Point Charges:

$$\vec{F}=\frac{1}{4 \pi \varepsilon_{0} \varepsilon_{r}} \frac{q_1 q_2}{|\vec{r}|^{3}} \vec{r}=\frac{1}{4 \pi \varepsilon_{0} \varepsilon_{r}} \frac{q_1 q_2}{|\vec{r}|^{2}} \hat{r}$$

  • The electric field intensity at any point is the force experienced by unit positive charge, given by $$\vec{E}=\frac{\vec{F}}{q_{0}}$$

  • Electric force on a charge ’ $q$ ’ at the position of electric field intensity $\vec{E}$ produced by some source charges is: $$\vec{F}=q \vec{E}$$

Electric Potential:

If $\left(W _{\infty}\right) _{\text {ext }}$ is the work required in moving a point charge $q$ from infinity to a point P, the electric potential of the point P is

$$\left.V _p=\frac{\left(W _{\infty p}\right) _{e x t}}{q}\right| _{a c c=0}$$

Potential Difference Between Points A and B:

$$ V_{B} -V_{A}=-\int_{A}^{B} \vec{E} \cdot d \vec{r} $$

$$\vec{E} = -\left[\hat{i} \frac{\partial}{\partial x} V+\hat{j} \frac{\partial}{\partial x} V+\hat{k} \frac{\partial}{\partial z} V\right]$$

$$= -\left[\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial x}+\hat{k} \frac{\partial}{\partial z}\right] $$

$$=- \nabla V = -grad V$$

Formulae of $\vec{E}$ and potential V

(i) Point charge:

$$E=\frac{K q}{|\vec{r}|^{2}} \cdot \hat{r}=\frac{K q}{r^{3}} \vec{r}$$

$$V=\frac{K q}{r}$$

(ii) Infinitely long line charge:

$$\frac{\lambda}{2 \pi \varepsilon_{0} r} \hat{r}=\frac{2 K \lambda \hat{r}}{r}$$

$$ \text{V= not defined}, V_{B}-V_{A}=-2 ~K \lambda \ln \left(r_{B} / r_{A}\right)$$

(iii) Infinite non-conducting thin sheet:

$$\frac{\sigma}{2 \varepsilon_{0}} \hat{n}$$

$$\text{V= not defined}, V_{B}-V_{A}=-\frac{\sigma}{2 \varepsilon_{0}}\left(r_{B}-r_{A}\right)$$

(iv) Uniformly charged ring

$$E_{\text {axis }}=\frac{KQx}{\left(R^{2}+x^{2}\right)^{3 / 2}}, \quad E_{\text {centre }}=0$$

$$V_{\text {axis }}=\frac{KQ}{\sqrt{R^{2}+x^{2}}}, \quad ~V_{\text {centre }}=\frac{KQ}{R}$$

Where: $x$ is the distance from centre along axis.

(v) Infinitely large charged conducting sheet:

$$\frac{\sigma}{\varepsilon_{0}} \hat{n}$$

$$\text{V= not defined}, V_{B}-V_{A}=-\frac{\sigma}{\varepsilon_{0}}\left(r_{B}-r_{A}\right)$$

(vi) Uniformly charged hollow conducting/ nonconducting/solid conducting sphere:

(a) $$\vec{E}=\frac{k Q}{|\vec{r}|^{2}} \hat{r}, r \geq R, V=\frac{K Q}{r}$$

(b) $$\vec{E}=0$$

for $$r<R, V=\frac{K Q}{R}$$

(vii) Uniformly charged solid nonconducting sphere (insulating material)

(a) $$\vec{E}=\frac{k Q}{|\vec{r}|^{2}} \hat{r} \text { for } r \geq R, V=\frac{K Q}{r}$$

(b)$$\vec{E}=\frac{K Q \vec{r}}{R^{3}}=\frac{\rho \vec{r}}{3 \varepsilon_{0}} \text { for } r \leq R,$$

$$ V=\frac{\rho}{6 \varepsilon_{0}}\left(3 R^{2}-r^{2}\right)$$

(viii) thin uniformly charged disc (surface charge density is $\sigma$ )

$$E_{\text {axis }}=\frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{x}{\sqrt{R^{2}+x^{2}}}\right]$$

$$ V_{\text {axis }}=\frac{\sigma}{2 \varepsilon_{0}}\left[\sqrt{R^{2}+x^{2}}-x\right]$$

  • Work done by external agent in taking a charge $q$ from $A$ to $B$ is:

$$\left(W_{e x t}\right)_{A B}=q\left(V_B-V_A\right)$$

or $$\left(W_{e l}\right)_{A B}=q\left(V_A-V_B\right)$$

Electrostatic Potential Energy

  • The electrostatic potential energy of a point charge: $$\mathrm{U}=\mathrm{qV}$$

  • PE of the system: $$U = \frac{U_1+U_2+…}{2}=(U_{12}+U_{13}+…+U_{1n})+(U_{23}+U_{24}+…+U_{2n})+(U_{34}+U_{35}+…+U_{3n})…$$

  • Energy Density: $$U=\frac{1}{2} \varepsilon \mathrm{E}^{2}$$

  • Self Energy of a uniformly charged shell: $$U_{\text {self }}=\frac{K Q^{2}}{2 R}$$

  • Self Energy of a uniformly charged solid non-conducting sphere:$$U_{\text {self }}=\frac{3 K Q^{2}}{5 R}$$

Electric Field Intensity Due to Dipole

(i) on the axis $\vec{E}=\frac{2 K \vec{P}}{r^{3}}$

(ii) on the equatorial position: $\vec{E}=-\frac{K \vec{P}}{r^{3}}$

(iii) Total electric field at general point $O(r, \theta)$ is $E_{r e s}=\frac{K P}{r^{3}} \sqrt{1+3 \cos ^{2} \theta}$

Potential Energy of an Electric Dipole in External Electric Field:

$$U=-\vec{p} \cdot \vec{E}$$

Electric Dipole in Uniform Electric Field :

$$\text { Torque } \vec{\tau}=\vec{\mathrm{p}} \times \vec{\mathrm{E}} ; \quad \vec{\mathrm{F}}=0$$

Electric Dipole in Non-uniform Electric Field:

$$\text { torque } \vec{\tau}=\vec{p} \times \vec{E} ; U=-\vec{p} \cdot \vec{E}, $$

$$\text { Net force }|F|=\left|p \frac{\partial E}{\partial r}\right|$$

Electric Potential Due to Dipole at General Point $(r, \theta)$ :

$$\mathrm{V}=\frac{\mathrm{P} \cos \theta}{4 \pi \varepsilon_{0} \mathrm{r}^{2}}=\frac{\vec{\mathrm{p}} \cdot \vec{\mathrm{r}}}{4 \pi \varepsilon_{0} \mathrm{r}^{3}}$$

Electric Flux:

  • The electric flux over the whole area is given by: $$\phi_{E}=\int_{S} \vec{E} \cdot \vec{d S}=\int_{S} E_{n} d S$$

  • Flux using Gauss’s law, Flux through a closed surface: $$\phi_{E}=\oint \vec{E} \cdot \vec{dS}=\frac{q_{in}}{\varepsilon_{0}}$$

  • Electric field intensity near the conducting surface: $$\phi_{E}=\frac{\sigma}{\varepsilon_{0}} \hat{n}$$

Electric Pressure :

Electric pressure at the surface of a conductor is given by formula

$$P=\frac{\sigma^{2}}{2 \varepsilon_{0}}$$

where: $\sigma$ is the local surface charge density.

Work Done By An Electric Force:

$$W = q \vec{E} \cdot \vec{d}$$

Intensity:

$$I = \frac{1}{2} \epsilon_0 c |\vec{E}|^2$$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें