Fluid Mechanics And Properties Of Matter

Fluids, Surface Tension, Viscosity & Elasticity :

Hydraulic Press:

$P=\frac{f}{a}=\frac{F}{A} \text { or } F=\frac{A}{a} \times f$

Hydrostatic Paradox: $P_{A}=P_{B}=P_{C}$

(i) Liquid placed in elevator : When elevator accelerates upward with acceleration $a_{0}$ then pressure in the fluid, at depth ’ $h$ ’ may be given by,

$ P=\rho h\left[g+a_{0}\right] $

and force of buoyancy, $B=m\left(g+a_{0}\right)$

(ii) Free surface of liquid in horizontal acceleration :

$\tan \theta=\frac{a_{0}}{g}$

$P_{1}-P_{2}=\rho v a_{0}$

where $P_{1}$ and $P_{2}$ are pressures at points 1 and 2.

Then $h_1-h_2=\frac{v a_0}{g}$

(iii) Free surface of liquid in case of rotating cylinder:

$h=\frac{v^{2}}{2 g}=\frac{\omega^{2} r^{2}}{2 g}$

Equation of Continuity:

$a_{1} v_{1}=a_{2} v_{2}$

In general, av = constant.

Bernoulli’s Theorem:

$\frac{P}{\rho}+\frac{1}{2} v^{2}+g h= \text{constant}$

Torricelli’s theorem:

Speed of efflux: $v=\sqrt{\frac{2 g h}{1-\frac{A_{2}^{2}}{A_{1}{ }^{2}}}}$

$A_{2}=$ area of hole, ${A}_{1}=$ area of vessel.

Elasticity and Viscosity:

$\text{Stress}=\frac{\text { restoring force }}{\text { area of the body }}=\frac{\mathrm{F}}{\mathrm{A}}$

Strain, $\in=\frac{\text { change in configuration }}{\text { original configuration }}$

(i) Longitudinal strain $=\frac{\Delta \mathrm{L}}{\mathrm{L}}$

(ii) $\epsilon_{\mathrm{v}}=$ volume strain $=\frac{\Delta \mathrm{V}}{\mathrm{V}}$

(iii) Shear Strain : $\tan \phi$ or $\phi=\frac{\mathrm{X}}{\ell}$

Young’s Modulus Of Elasticity:

$ \mathrm{Y}=\frac{\mathrm{F} / \mathrm{A}}{\Delta \mathrm{L} / \mathrm{L}}=\frac{\mathrm{FL}}{\mathrm{A} \Delta \mathrm{L}}$

Potential Energy Per Unit Volume:

$u =\frac{1}{2}(\text{stress} \times \operatorname{strain})=\frac{1}{2}\left(\mathrm{Y} \times \operatorname{strain}^{2}\right)$

Inter-Atomic Force-Constant:

$\mathrm{k}=\mathrm{Yr}_{0}$

Newton’s Law of viscosity:

$F \propto A \frac{d v}{d x} \text { or } F=-\eta A \frac{d v}{d x}$

Stoke’s Law:

$F=6 \pi \eta r v $

Terminal velocity:

$ v_T=\frac{2}{9} \frac{r^{2}(\rho-\sigma) g}{\eta}$

Surface Tension

$T=\frac{\text { Total force on either of the imaginary line }(F)}{\text { Length of the line }(\ell)}$

$\mathrm{T}=\mathrm{S}=\frac{\Delta \mathrm{W}}{\mathrm{A}}$

Thus, surface tension is numerically equal to surface energy or work done per unit increase surface area.

  • Inside a bubble : $\left(p-p_{a}\right)=\frac{4 T}{r}=p_{\text {excess }} ;$

  • Inside the drop : $\left(p-p_{a}\right)=\frac{2 T}{r}=p_{\text {excess }}$

  • Inside air bubble in a liquid : $\left(p-p_{a}\right)=\frac{2 T}{r}=p_{\text {excess }}$

  • Capillary Rise $ h=\frac{2 T \cos \theta}{r \rho g}$

Relations Between Elastic Constants

E = Young’s modulus of elasticity,

G = Modulus of rigidity,

K = Bulk modulus,

$\nu$ = Poisson’s ratio

  • Relationships between Young’s Modulus and Modulus of Rigidity: $E = 2G(1 + \nu)$

  • Relationships between Young’s Modulus and Bulk Modulus: $E = 3K(1 - 2\nu)$

  • Relationships between Modulus of Rigidity and Bulk Modulus: $G = \frac{3K(1 - 2\nu)}{2(1 + \nu)}$

  • Relationships between Poisson’s Ratio $\nu = \frac{3K - 2G}{2(3K + G)}$

  • Relation involving all three moduli: $E = 9KG / (3K + G)$

Bulk Modulus

$B=-P/(\Delta V / V)$

Compressibility

$k=(1 / B)=-(1 / \Delta P) \times(\Delta V / V)$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें