Gravitation

GRAVITATION: Universal Law of Gravitation

$$F \propto \frac{m_{1} m_{2}}{r^{2}} \text { or } F=G \frac{m_{1} m_{2}}{r^{2}}$$

where $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$ is the universal gravitational constant.

Newton’s Law of Gravitation in vector form :

$$\vec{F_{12}} = \frac{Gm_1m_2}{r^2} \hat{r_{12}}$$

$$ \vec{F_{21}} = \frac{Gm_1m_2}{r^2} \hat{r_{21}}$$

Now $$\hat{r_{12}} = -\hat{r_{21}}$$

Thus,

$$\vec{F_{21}}=\frac{-G m_1 m_2}{r^2} \hat{r}_{12}$$

Comparing above, we get $$\vec{F_{12}}=-\vec{F_{21}}$$

Gravitational Field:

$$E=\frac{F}{m}=\frac{G M}{r^{2}}$$

Gravitational Potential:

$$V=-\frac{G M}{r} . \quad E=-\frac{d V}{d r}$$

  • Ring

    $$V=\frac{-G M}{x \text { or }\left(a^{2}+r^{2}\right)^{1 / 2}} \quad \quad E=\frac{-G M r}{\left(a^{2}+r^{2}\right)^{3 / 2}} \hat{r}$$

    $$\text { or } E=-\frac{G M \cos \theta}{x^{2}}$$

    Gravitational field is maximum at a distance,

    $$r= \pm a / \sqrt{2} \text { and it is }-2 G M / 3 \sqrt{3} a^{2}$$

  • Thin Circular Disc

    $$V=\frac{-2 G M}{a^{2}}\left[\left[a^{2}+r^{2}\right]^{\frac{1}{2}}-r\right] E=-\frac{2 G M}{a^{2}}\left[1-\frac{r}{\left[r^{2}+a^{2}\right]^{\frac{1}{2}}}\right]=-\frac{2 G M}{a^{2}}[1-\cos \theta]$$

  • Non conducting solid sphere

    (a) Point P inside the sphere $r \leq a$, then

    $$V=-\frac{G M}{2 a^{3}}\left(3 a^{2}-r^{2}\right) E=-\frac{G M r}{a^{3}}$$

    At the centre $$V=-\frac{3 G M}{2 a} \quad \text{and} \quad E=0$$

    (b) Point $P$ outside the sphere $r \geq a$, then

    $$ V=-\frac{G M}{r} \quad E=-\frac{G M}{r^{2}}$$

  • Uniform Thin Spherical Shell/ Conducting solid sphere

    (a) Point $P$ Inside the shell

    $r \leq a$, then $$V=\frac{-G M}{a} \quad E=0$$

    (b) Point $P$ outside shell

    $r \geq a$, then $$V=\frac{-G M}{r} \quad E=-\frac{G M}{r^{2}}$$

Variation Of Acceleration Due To Gravity :

  • Effect of Altitude

    $$g_{h}=\frac{G M_{e}}{\left(R_{e}+h\right)^{2}}=g\left(1+\frac{h}{R_{e}}\right)^{-2}$$

    $$\simeq g\left(1-\frac{2 h}{R_{e}}\right) \text { when } h < <R \text {. }$$

  • Effect of depth $$g_{d}=g\left(1-\frac{d}{R_{e}}\right)$$

  • Effect of the surface of Earth

    The equatorial radius is about $21 \mathrm{~km}$ longer than its polar radius. We know, $$g=\frac{GM_{e}}{R_{e}^{2}}$$

    Hence $$g_{\text {pole }}>g_{\text {equator }}.$$

Satellite Velocity (Or Orbital Velocity)

$$v_{0}=\left[\frac{G M_{e}}{\left(R_{e}+h\right)}\right]^{\frac{1}{2}}=\left[\frac{g R_{e}^{2}}{\left(R_{e}+h\right)}\right]^{\frac{1}{2}}$$

When $h«R_e$ then $v_0=\sqrt{gR}$

$$\therefore \quad v_{0}=\sqrt{9.8 \times 6.4 \times 10^{6}}$$

$$=7.92 \times 10^{3} \mathrm{ms}^{-1}=7.92 \mathrm{km} \mathrm{s}^{1}$$

Time period of Satellite:

$$T=\frac{2 \pi\left(R_{e}+h\right)}{\left[\frac{g R_{e}^{2}}{\left(R_{e}+h\right)}\right]^{\frac{1}{2}}}=\frac{2 \pi}{R_{e}}\left[\frac{\left(R_{e}+h\right)^{3}}{g}\right]^{\frac{1}{2}}$$

Energy of a Satellite:

$$U=\frac{-G M_{e} m}{r} \quad \text{K.E.} =\frac{G M_{e} m}{2 r} ;\quad \text{then total energy:} \quad E=-\frac{G M_{e} m}{2 R_{e}}$$

Kepler’s Laws

Law of area :

  • The line joining the sun and a planet sweeps out equal areas in equal intervals of time.

  • Areal velocity: $$ v_A=\frac{\text { area swept }}{\text { time }}=\frac{\frac{1}{2} r(r d \theta)}{d t}= \frac{1}{2} r^{2} \frac{d \theta}{d t}= \text{constant .}$$

  • Hence $\frac{1}{2} r^{2} \omega=$ constant.

Law of periods :

$$\frac{T^{2}}{R^{3}}=\text{constant}$$

Effective Gravitational Acceleration

Considering both gravitational and centrifugal effects, the effective gravitational acceleration at any latitude is:

$$g_{\text{effective}} = g - \omega^2 r$$

Where: $\omega$ is the angular velocity of the Earth’s rotation.

At the poles, this simplifies to:

$$g_{\text{effective, poles}} = g, \quad \text{because} \quad a_c = 0 \quad \text{at the poles.}$$

Escape velocity

The escape speed from the surface of the earth is $$ v = \sqrt{2G \frac{M}{r}}$$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें