Heat And Thermodynamics

Total Translational K.E. Of Gas

$$=\frac{1}{2} M\left\langle v^{2}\right\rangle=\frac{3}{2} P V=\frac{3}{2} n R T$$

$$<v^{2}>=\frac{3 P}{\rho} \quad v_{rms}=\sqrt{\frac{3 P}{\rho}}=\sqrt{\frac{3 RT}{M_{mol}}}=\sqrt{\frac{3 KT}{m}}$$

Important Points :

$$-\mathrm{v}_{\mathrm{rms}} \propto \sqrt{\mathrm{T}}$$

$$\bar{v}=\sqrt{\frac{8 K T}{\pi m}}=1.59 \sqrt{\frac{K T}{m}}$$

$$\mathrm{v}_{\mathrm{rms}}=1.73 \sqrt{\frac{\mathrm{KT}}{\mathrm{m}}}$$

Most probable speed:

$$V_{p}=\sqrt{\frac{2 KT}{m}}=1.41 \sqrt{\frac{KT}{m}} \therefore V_{rms}>\overline{V}>V_{mp}$$

Degree of freedom :

  • Monoatomic $f=3$

  • Diatomic $f=5$

  • Polyatomic $f=6$

Maxwell’s Law Of Equipartition Of Energy :

  • Total K.E. of the molecule $=\frac{1}{2} \mathrm{fKT}$

  • For an ideal gas : Internal energy $$U=\frac{f}{2} n R T$$

Ideal gas law:

$$PV = nRT$$

First Law Of Thermodynamics:

$$\Delta U = Q - W$$

Isothermal Process:

  • Workdone in isothermal process : $$W=\left[2.303 nRT \log _{10} \frac{V_f}{V_i}\right]$$

  • Internal energy in isothermal process : $$ \Delta \mathrm{U}=0$$

Isochoric Process

  • Work done in isochoric process : $$ d W=0$$

  • Change in internal energy for an ideal gas during an isochoric process: $$\Delta U = nC_v\Delta T$$

Isobaric process :

  • Work done: $$\Delta \mathrm{W}=n R\left(T_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)$$

  • Change in internal energy for isobaric process: $$\Delta U = n C_p \Delta T$$

Adiabatic process :

  • Work done: $$\Delta W=\frac{nR\left(T_{i}-T_{f}\right)}{\gamma-1}$$

Specific heat :

$$ C_{V}=\frac{f}{2} R \quad C p=\left(\frac{f}{2}+1\right) R $$

Molar heat capacity of ideal gas in terms of $\mathbf{R}$ :

(i) for monoatomic gas : $$\frac{C_{p}}{C_{v}}=1.67$$

(ii) for diatomic gas : $$\frac{C_{p}}{C_{v}}=1.4$$

(iii) for triatomic gas : $$\frac{C_{p}}{C_{v}}=1.33$$

Heat Capacity Ratio :

$$\gamma=\frac{C_{p}}{C_{v}}=\left[1+\frac{2}{f}\right]$$

Mayer’s equation:

For ideal gas: $$C_{p}-C_{v}=R $$

In cyclic process :

$$\Delta Q=\Delta W$$

In a mixture of non-reacting gases :

$$\text{Molar weight}=\frac{n_{1} M_{1}+n_{2} M_{2}}{n_{1}+n_{2}}$$

$$C_{v}=\frac{n_{1} C_{v_{1}}+n_{2} C_{v_{2}}}{n_{1}+n_{2}}$$

$$\gamma=\frac{C_{p(\text { mix })}}{C_{v(\text { mix })}}=\frac{n_{1} C_{p_{1}}+n_{2} C_{p_{2}}+\ldots}{n_{1} C_{v_{1}}+n_{2} C_{v_{2}}+\ldots}$$

Heat Engines

$$\text{Efficiency,} \eta=\frac{\text { work done by the engine }}{\text { heat sup plied to it }}$$

$$\eta=\frac{W}{Q_{H}}=\frac{Q_{H}-Q_{L}}{Q_{H}}=1-\frac{Q_{L}}{Q_{H}}$$

Second law of Thermodynamics

  • Kelvin- Planck Statement

It is impossible to construct an engine, operating in a cycle, which will produce no effect other than extracting heat from a reservoir and performing an equivalent amount of work.

  • Clausius Statement

It is impossible to make heat flow from a body at a lower temperature to a body at a higher temperature without doing external work on the working substance

Entropy:

  • Change in entropy of the system is $$\Delta S=\frac{\Delta Q}{T} \Rightarrow S_{f}-S_{i}=\int_{i}^{f} \frac{\Delta Q}{T}$$
  • In an adiabatic reversible process, entropy of the system remains constant.

Efficiency of Carnot Engine:

(1) Operation I (Isothermal Expansion)

(2) Operation II (Adiabatic Expansion)

(3) Operation III (Isothermal Compression)

(4) Operation IV (Adiabatic Compression)

Thermal Efficiency of a Carnot Engine:

$$\frac{V_{2}}{V_{1}}=\frac{V_{3}}{V_{4}} \Rightarrow \frac{Q_{2}}{Q_{1}}=\frac{T_{2}}{T_{1}} \Rightarrow \eta=1-\frac{T_{2}}{T_{1}}$$

Refrigerator (Heat Pump)

  • Coefficient of performance, $$\beta=\frac{Q_{2}}{W}=\frac{1}{\frac{T_{1}}{T_{2}}-1}==\frac{1}{\frac{T_{1}}{T_{2}}-1}$$

Calorimetry And Thermal Expansion Types Of Thermometers :

(a) Liquid Thermometer : $$ T=\left[\frac{\ell-\ell_{0}}{\ell_{100}-\ell_{0}}\right] \times 100$$

(b) Gas Thermometer :

  • Constant volume : $$T=\left[\frac{P-P_{0}}{P_{100}-P_{0}}\right] \times 100 ; P=P_{0}+\rho g h$$

  • Constant Pressure : $$T=\left[\frac{\mathrm{V}}{\mathrm{V}-\mathrm{V}^{\prime}}\right] \mathrm{T}_{0}$$

(c) Electrical Resistance Thermometer :

$$ T=\left[\frac{R_{t}-R_{0}}{R_{100}-R_{0}}\right] \times 100 $$

Thermal Expansion :

(a) Linear :

$$ \alpha=\frac{\Delta L}{L_{0} \Delta T} \quad \text { or } \quad L=L_{0}(1+\alpha \Delta T) $$

(b) Area/superficial :

$$ \beta=\frac{\Delta A}{A_{0} \Delta T} \quad \text { or } \quad A=A_{0}(1+\beta \Delta T) $$

(c) volume/ cubical :

$$ r=\frac{\Delta V}{V_{0} \Delta T} \quad \text { or } \quad V=V_{0}(1+\gamma \Delta T) $$

$$ \alpha=\frac{\beta}{2}=\frac{\gamma}{3} $$

Thermal stress of a material :

$$ \frac{F}{A}=Y \frac{\Delta \ell}{\ell} $$

Energy stored per unit volume :

$$ E=\frac{1}{2} K(\Delta L)^{2} \quad \text { or } \quad E=\frac{1}{2} \frac{A Y}{L}(\Delta L)^{2} $$

Variation of time period of pendulum clocks :

$$ \Delta \mathrm{T}=\frac{1}{2} \alpha \Delta \theta \mathrm{T} $$

$$ \mathrm{T}^{\prime}<\mathrm{T} \quad \text { - clock-fast : time-gain } $$

$$ \mathrm{T}^{\prime}>\mathrm{T} \quad \text { - clock slow : time-loss } $$

Calorimetry :

  • Specific heat: $$S=\frac{\mathrm{Q}}{\mathrm{m} \cdot \Delta \mathrm{T}}$$

  • Molar specific heat: $$\mathrm{C}=\frac{\Delta \mathrm{Q}}{\mathrm{n} \cdot \Delta \mathrm{T}}$$

  • Water equivalent: $$m_{m} S_{m}=m_{w} S_{w}$$

Heat Transfer

  • Thermal Conduction : $$ \frac{d Q}{d t}=-K A \frac{d T}{d x}$$

  • Thermal Resistance : $$\mathrm{R}=\frac{\ell}{\mathrm{KA}}$$

Series And Parallel Combination Of Rod :

(i) Series : $$\frac{\ell_{\text {eq }}}{K_{\text {eq }}}=\frac{\ell_{1}}{K_{1}}+\frac{\ell_{2}}{K_{2}}+\ldots$$ when $$\left(A_{1}=A_{2}=A_{3}=\ldots\right)$$

(ii) Parallel : $$K_{\text {eq }} A_{e q}=K_{1} A_{1}+K_{2} A_{2}+\ldots$$ when $$\left(\ell_{1}=\ell_{2}=\ell_{3}=\ldots\right)$$

For absorption, reflection and transmission: $ r+t+a=1 $

  • Emissive power : $$ \mathrm{E}=\frac{\Delta \mathrm{U}}{\Delta \mathrm{A} \Delta \mathrm{t}}$$

  • Spectral emissive power : $$ E_{\lambda}=\frac{d E}{d \lambda}$$

Emissivity : $$ e=\frac{E \text { of a body at } \mathrm{T} \text { temperature }}{\mathrm{E} \text { of a black body at } \mathrm{T} \text {temperature}}$$

  • Kirchoff’s law : $$4\frac{E \text { (body) }}{a \text { (body) }}=E \text{(black body)}$$

Wein’s Displacement law :

$$\lambda_{\mathrm{m}} \cdot \mathrm{T}=\mathrm{b}$$

$$b=0.282 \mathrm{~cm}-\mathrm{k}$$

Stefan Boltzmann law :

$$ \mathrm{u}=\sigma \mathrm{T}^{4} \quad \quad \mathrm{~s}=5.67 \times 10^{-8} \mathrm{W} \mathrm{m}^{2} \mathrm{k}^{4} $$

$$ \Delta u=u-u_{0}=e \sigma A \left(T^{4}-T_{0}^{4}\right) $$

Newton’s law of cooling :

$$\frac{\mathrm{d} \theta}{\mathrm{dt}}=\mathrm{k}\left(\theta-\theta_{0}\right) ; \quad \theta=\theta_{0}+\left(\theta_{\mathrm{i}}-\theta_{0}\right) \mathrm{e}^{-\mathrm{kt}}$$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें