Magnetic Effect Of Current And Magnetic Force On Charge

Magnetic Field Due To A Moving Point Charge:

$$ \vec{B}=\frac{\mu_{0}}{4 \pi} \cdot \frac{q(\vec{v} \times \vec{r})}{r^{3}} $$

Biot-Savart’s Law:

$$ \overrightarrow{\mathrm{dB}}=\frac{\mu_{0} l}{4 \pi} \cdot\left(\frac{\overrightarrow{\mathrm{d} \ell} \times \overrightarrow{\mathrm{r}}}{\mathrm{r}^{3}}\right) $$

Magnetic Field Due To A Straight Wire:

,

$$B=\frac{\mu_{0}}{4 \pi} \frac{I}{r}\left(\sin \theta_{1}+\sin \theta_{2}\right)$$

Magnetic Field Due To Infinite Straight Wire:

$$B=\frac{\mu_{0}}{2 \pi} \frac{I}{r}$$

  • Magnetic Field Due To Circular Loop

    (i) At centre

    $$ B=\frac{\mu_{0} N I}{2 r} $$

    (ii) At Axis

    $$ B=\frac{\mu_{0}}{2}\left(\frac{N I R^{2}}{\left(R^{2}+x^{2}\right)^{3 / 2}}\right) $$

Magnetic Field On The Axis Of The Solenoid:

$$ \mathrm{B}=\frac{\mu_{0} \mathrm{nl}}{2}\left(\cos \theta_{1}-\cos \theta_{2}\right) $$

Ampere’s Law:

$$\oint \vec{B} \cdot d \vec{\ell}=\mu_0 l$$

Magnetic Field Due To Long Cylindrical Shell:

$$ \begin{aligned} & B=0, r<R \\ & =\frac{\mu_{0}}{2 \pi} \frac{I}{r}, r \geq R \end{aligned} $$

Magnetic Force Acting On A Moving Point Charge:

a. $$ \overrightarrow{\mathrm{F}}=\mathrm{q}(\vec{v} \times \overrightarrow{\mathrm{B}})$$

$$ \begin{aligned} (i) & &\vec{v} \perp \vec{B} \\ & & r=\frac{m v}{q B}\\ & & \mathrm{T}=\frac{2 \pi \mathrm{m}}{\mathrm{qB}} \end{aligned} $$

(ii) $$\quad$$

$$ r=\frac{m v \sin \theta}{q B} $$

$$ \mathrm{T}=\frac{2 \pi \mathrm{m}}{\mathrm{qB}} $$

Pitch $$=\frac{2 \pi \mathrm{m} v \cos \theta}{\mathrm{qB}}$$

b. $$ \vec{F}=q ((\vec{v} \times \vec{B})+\vec{E})$$

Magnetic Force Acting On A Current Carrying Wire:

$$ \overrightarrow{\mathrm{F}}=I(\vec{\ell} \times \vec{B}) $$

Magnetic Moment Of A Current Carrying Loop:

$$\mathrm{M}=\mathrm{N} \cdot \mathrm{I} \cdot \mathrm{A}$$

Torque Acting On A Loop:

$$\vec{\tau}=\vec{M} \times \vec{B}$$

Magnetic field due to a single pole:

$$B=\frac{\mu_{0}}{4 \pi} \cdot \frac{m}{r^{2}}$$

Magnetic field on the axis of magnet:

$$B=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 M}{r^{3}}$$

Magnetic Field On The Equatorial Axis Of The Magnet:

$$B=\frac{\mu_{0}}{4 \pi} \cdot \frac{M}{r^{3}}$$

Magnetic Field At Point P Due To Magnet:

$$B=\frac{\mu_{0}}{4 \pi} \frac{M}{r^{3}} \sqrt{1+3 \cos ^{2} \theta}$$

The Force Per Unit Length Between Two Parallel Wires Carrying Currents:

$$\frac{F}{L} = \frac{\mu_0 I_1 I_2}{2\pi d}$$

Moving Coil Galvanometer:

$$\theta = \frac{NBIA}{k}$$

Potential Energy Of A Magnetic Dipole:

$$U = - \vec{\mu} \cdot \vec{B}$$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें