Modern Physics

Photoelectric Effect

  • work function: $$\mathrm{W}=h v_{0}=\frac{\mathrm{hc}}{\lambda_{0}}$$

  • Work Function is Minimum For Cesium: $(1.9 \mathrm{eV})$

  • Photoelectric current is directly proportional to intensity of incident radiation. $(v-$ constant $)$

  • Photoelectrons ejected from metal have kinetic energies ranging from 0 to $\mathrm{KE}_{\max }$.

Here, $$KE_{max}=e V_s \quad V_s - \text{stopping potential}$$

  • Stopping potential Stopping potential is independent of intensity of light used ( $v$-constant)

  • Intensity in the terms of electric field is $$ \mathrm{I}=\frac{1}{2} \in_{0} \mathrm{E}^{2} \cdot \mathrm{c} $$

  • Momentum of one photon is $$p = \frac{h}{\lambda}$$

  • Einstein equation for photoelectric effect is

$$hv=w_0+k_{max}\Rightarrow \hspace{2mm}\frac{hc}{\lambda}=\frac{hc}{\lambda_0}+eV_s$$

  • Energy:

$$\Delta \mathrm{E}=\frac{12400 \mathrm{eV}}{\lambda\left(\mathrm{A}^{0}\right)} $$

Angular momentum

$$ L = n \frac{h}{2\pi}$$

Force due to radiation (Photon) (no transmission)

(i) When light is incident perpendicularly

(a) $$\quad a=1 \quad r=0$$

$$ \mathrm{F}=\frac{\mathrm{IA}}{\mathrm{C}}, \quad \text { Pressure }=\frac{\mathrm{I}}{\mathrm{C}} $$

(b) $$\quad r=1, \quad a=0$$

$$ F=\frac{2 I A}{c}, \quad P=\frac{2 I}{c} $$

(c) when $$0<r<1 \quad\text{and}\quad a+r=1$$

$$ F=\frac{I A}{c}(1+r), P=\frac{I}{c}(1+r) $$

When light is incident at an angle $\theta$ with vertical.

(a) $$ a=1,\quad r=0$$

$$ F=\frac{I A \cos \theta}{C}, \quad P=\frac{F \cos \theta}{A}=\frac{I}{C} \cos 2 \theta $$

(b) $$ r=1,\quad a=0$$

$$ F=\frac{2 I A \cos ^{2} \theta}{c}, \quad P=\frac{2 I \cos ^{2} \theta}{c} $$

(c) $$0<r<1, \quad a+r=1$$

$$ P=\frac{I \cos ^{2} \theta}{C}(1+r) $$

De Broglie wavelength:

$$ \lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{\mathrm{h}}{\mathrm{P}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mKE}}} $$

Radius And Speed Of Electron In Hydrogen Like Atoms:

$$r_n=\frac{n^2}{Z}a_0, \quad a_0=0.529 \stackrel{\circ}{A}$$

$$V_n=\frac{Z}{n}V_0, \quad V_0=2.19\times10^6 m/s$$

Energy In nth Orbit:

$$ E_{n}=E_{1} \cdot \frac{Z^{2}}{n^{2}} \quad E_{1}=-13.6 \mathrm{eV} $$

Wavelength Corresponding To Spectral Lines:

$$ \frac{1}{\lambda}=\mathrm{R}\left[\frac{1}{\mathrm{n}_1^2}-\frac{1}{\mathrm{n}_2^2}\right] $$

  • Lyman series: $\mathrm{n}_1=1,$ $\mathrm{n}_2=2,3,4$

  • Balmer series: $\mathrm{n}_1=2,$ $\mathrm{n}_2=3,4,5$.

  • Paschen series: $\mathrm{n}_1=3,$ $\mathrm{n}_2=4,5,6$

  • The lyman series is an ultraviolet and Paschen, Brackett and Pfund series are in the infrared region.

  • Total number of possible transitions, is $\frac{\mathrm{n}(\mathrm{n}-1)}{2}$, (from nth state)

  • If effect of nucleus motion is considered,

$$ r_{n} = \left(0.529 , \text{\AA}\right) \frac{n^{2}}{Z} \cdot \frac{m}{\mu} $$

$$E_{n}=(-13.6 \mathrm{eV}) \frac{Z^{2}}{n^{2}} \cdot \frac{\mu}{m}$$

Here $\mu$ is reduced mass: $$\mu=\frac{M m}{(M+m)}, M-\text { mass of nucleus }$$

Minimum wavelength for $x$-rays:

$$\lambda_{min}=\frac{hc}{eV_0}=\frac{12400}{V_0(volt)}\stackrel{\circ}{A}$$

Moseley’s Law:

$$\sqrt{v}=a(z-b)$$

where: $a$ and $b$ are positive constants for one type of $x$-rays (independent of $z$ )

Average Radius Of Nucleus:

$$R=R_{0} A^{1 / 3}, \quad R_{0}=1.1 \times 10^{-15} M$$

$$A \text { - mass number }$$

Binding energy of nucleus of mass $M$:

$$B=\left(Z M_{p}+N M_{N}-M\right) C^{2}$$

Alpha - Decay Process:

$$^A_ZX\rightarrow\frac{A-4}{Z-2}Y+^4_2He$$

$$Q=\left[m(^A_ZX)-m\left(\frac{A-4}{z-2}Y\right)-m(^4_2He)\right]C^2$$

Beta- minus decay

$$\begin{gathered} { } _Z^A X \rightarrow{ } _{Z+1}^A Y+\beta^{-}+v^{-} \ \text {Q-value }=\left[m\left({ } _z^A X\right)-m\left({ } _{Z+1}^A Y\right)\right] c^2 \end{gathered}$$

Beta plus-decay

$$\begin{aligned} & { } _z^A X \longrightarrow{ } _{Z-1}^A Y+\beta+ v^{+} \ & Q-\text { value }=\left[m\left({ } _z^A X\right)-m\left({ } _{Z-1}^A Y\right)-2 m e\right] c^2 \end{aligned}$$

Electron capture : when atomic electron is captured, $x$-rays are emitted.

$$^A_zX+e\rightarrow\frac{A}{Z-1}Y+v$$

Radioactive Decay:

In radioactive decay, number of nuclei at instant $t$ is given by $$N=N_{0} e^{-\lambda t}$$

where: $\lambda$ is decay constant.

  • Activity of sample : $$\quad A=A_{0} e^{-\lambda t}$$

  • Activity per unit mass is called specific activity.

  • Half life : $$T_{1 / 2}=\frac{0.693}{\lambda}$$

  • Average life : $$T_{av}=\frac{T_{1/2}}{0.693}$$

  • A radioactive nucleus can decay by two different processes having half lives $t_{1}$ and $t_{2}$ respectively.

Effective half-life of nucleus is given by $$\frac{1}{t}=\frac{1}{t_{1}}+\frac{1}{t_{2}}$$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें