Principle Of Communication

Transmission From Tower Of Height $h$:

The distance to the horizon $$d_T=\sqrt{2Rh_T}$$ $$d_M=\sqrt{2Rh_T} + \sqrt{2Rh_R}$$

Amplitude Modulation

The modulated signal $c_{m}(t)$ can be written as:

$$c_{m}(t)=A_{c} \sin \omega_{c} t+\frac{\mu A_{c}}{2} \cos \left(\omega_{c}-\omega_{m}\right) t-\frac{\mu A_{c}}{2} \cos \left(\omega_{c}+\omega_{m}\right)$$

Modulation Index:

$$m_{a}=\frac{\text { Change in amplitude of carrier wave }}{\text { Amplitude of original carrier wave }}=\frac{k A_{m}}{A_{c}}$$

Where: $\mathrm{k}=\mathrm{A}$ factor which determines the maximum change in the amplitude for a given amplitude $E_{m}$ of the modulating.

If $k=1$ then, $$m_{a}=\frac{A_{m}}{A_{c}}=\frac{A_{\text {max }}-A_{\text {min }}}{A_{\text {max }}-A_{\text {min }}}$$

If a carrier wave is modulated by several sine waves the total modulated index $m_{t}$ is given by

$$m_{t}=\sqrt{m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+\ldots}$$

Side Band Frequencies:

  • $\left(f_{c}+f_{m}\right)=$ Upper side band (USB) frequency

  • $\left(f_{c}-f_{m}\right)=$ Lower side band (LBS) frequency

Band width:

$$\text{Band width} : (f_c+f_m)-(f_c-f_m)=2f_m$$

Power in AM waves :

$$P=\frac{V_{\text {rms }}^{2}}{R}$$

(i) carrier power: $$P_{c}=\frac{\left(\frac{A_{c}}{\sqrt{2}}\right)^{2}}{R}=\frac{A_{c}^{2}}{2 R}$$

(ii) Total power of side bands: $$P_{s b}=\frac{\left(\frac{m_{a} A_{c}}{2 \sqrt{2}}\right)^{2}}{R}=\frac{\left(\frac{m_{a} A_{c}}{2 \sqrt{2}}\right)}{2 R}=\frac{m_{a}^{2} A_{c}^{2}}{4 R}$$

(iii) Total power of AM wave: $$P_{\text {Total }}=P_{c}+P_{a b}=\frac{A_{c}^{2}}{2 R}\left(1+\frac{m_{a}^{2}}{2}\right)$$

(iv) $$\frac{\mathrm{P} _{\mathrm{t}}}{\mathrm{P} _{\mathrm{c}}}=\left(1+\frac{\mathrm{m} _{\mathrm{a}}^2}{2}\right) \quad \text{and} \quad \frac{\mathrm{P} _{\mathrm{sb}}}{\mathrm{P} _{\mathrm{t}}}=\frac{\mathrm{m} _{\mathrm{a}}^2 / 2}{\left(1+\frac{\mathrm{m} _{\mathrm{a}}^2}{2}\right)}$$

(v) Maximum power in the AM (without distortion) will occur when $m_{a}=1$ i.e., $$P_{t}=1.5 P=3 P_{a b}$$

(vi) If $I_c=$ unmodulated current and $I_t=$ total or modulated current.

$$\Rightarrow \frac{P_{t}}{P_{c}}=\frac{I_{t}^{2}}{I_{c}^{2}} \Rightarrow \frac{I_{t}}{I_{c}}=\sqrt{\left(1+\frac{m_{a}^{2}}{2}\right)}$$

Frequency Modulation

  • Frequency deviation $$\delta=\left(f_{\text {max }}-f_{c}\right)=f_{c}-f_{\text {min }}=k_{f} \cdot \frac{E_{m}}{2 \pi}$$
  • Carrier swing (CS) $$=C S=2 \times \Delta f$$
  • Frequency modulation index $\left(m_{f}\right)$

$$m_{f}=\frac{\delta}{f_{m}}=\frac{f_{\max }-f_{c}}{f_{m}}=\frac{f_{c}-f_{\text {min }}}{f_{m}}=\frac{k_{f} E_{m}}{f_{m}}$$

  • Frequency spectrum $=\mathrm{FM}$ side band modulated signal consist of infinite number of side bands whose frequencies are

$$\left(f_{c} \pm f_{m}\right),\left(f_{c} \pm 2 f_{m}\right), \left(f_{c} \pm 3 f_{m}\right) \ldots$$

  • Deviation ratio: $$ \text{Deviation ratio}=\frac{(\Delta f_{\max })}{\left(f_m \right)_{\max }}$$

  • Percent modulation:

$$ m = \frac{ \Delta f_{actual} }{ \Delta f_{max }}$$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें