Rectilinear Motion

Average Velocity (in an interval) :

$$ v_{av} = \overline{v} = \langle v \rangle = \frac{ \text{Total displacement}}{\text{ Total time taken}} = \frac{\vec{\mathrm{x_f}} - \vec{\mathrm{x_i}}}{\Delta t} $$

Average Velocity For n Velocities:

$$\frac{1}{v_{av}}= \frac{1}{v_1} +\frac{1}{v_2} +…+ \frac{1}{v_n}$$

Average Speed (in an interval):

$$\text{Average Speed} =\frac{ \text{Total distance travelled} }{ \text{ Total time taken }}$$

Instantaneous Velocity (at an instant) :

$$\vec{\mathrm{v}}_{\mathrm{inst}}=\lim _{\Delta \mathrm{t} \rightarrow 0}\left(\frac{\Delta \vec{\mathrm{x}}}{\Delta \mathrm{t}}\right)$$

Average Acceleration (in an interval):

$$v_{av} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v_f} - \vec{v_i}}{\Delta t}$$

Instantaneous Acceleration (at an instant):

$$\vec{a}=\frac{d \vec{v}}{d t}=\lim _{\Delta t \rightarrow 0}\left(\frac{\vec{\Delta v}}{\Delta t}\right)$$

Graphs in Uniformly Accelerated Motion along a straight line $(a \neq 0)$:

  • $x$ is a quadratic polynomial in terms of $t$. Hence $x-t$ graph is a parabola.

x-t graph

v-t graph

  • $v$ is a linear polynomial in terms of $t$. Hence $v-t$ graph is a straight line of slope a.

a-t graph

  • a-t graph is a horizontal line because a is constant.

Maxima & Minima

  • At maximum: $$\frac{dy}{dx} = 0,\quad \frac{d}{dx}\left(\frac{dy}{dx}\right)<0 $$

  • At minima: $$\frac{dy}{dx} = 0,\quad \frac{d}{dx}\left(\frac{dy}{dx}\right)>0 $$

Equations of Motion (for constant acceleration):

,

(a) $ v=u+a t$

(b) $s=u t+\frac{1}{2}a t^{2} \quad s=v t-\frac{1}{2}a t^{2} \quad x_{f}=x_{i}+u t+\frac{1}{2} a t^{2}$

(c) $ v^{2}=u^{2}+2 a s$

(d) $\mathrm{s}=\frac{(\mathrm{u}+\mathrm{v})}{2} \mathrm{t}$

(e) $s_{n}=u+\frac{a}{2}(2 n-1)$

For freely falling bodies: $u = 0$

(taking upward direction as positive)

(a) $\mathrm{v}=-\mathrm{gt}$

(b) $\mathrm{s}=\frac{1}{2} \mathrm{gt}^{2} \hspace{10mm}\mathrm{s}=\mathrm{vt}+\frac{1}{2} \mathrm{gt}^{2} \hspace{10mm}h_{f}=h_{i}-\frac{1}{2} g t^{2}$

(c) $v^{2}=2 g s$

(d) $\quad s_{n}=-\frac{g}{2}(2 n-1)$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें