Rigid Body Dynamics

Rigid Body :

If the above body is rigid

$$ V_A \cos \theta_1=V_B \cos \theta_2 $$

$V_{B A}=$ relative velocity of point $B$ with respect to point $A$.

Moment Of Inertia(I) :

  • Definition : Moment of Inertia is defined as the capability of system to oppose the change produced in the rotational motion of a body.

  • Moment of Inertia is a scalar positive quantity.

$$I =mr_{1}^{2}+m_{2}r_{2}^{2}+\ldots$$

$$I=I_1+I_2+I_3+\ldots$$

  • SI units of Moment of Inertia is $\mathrm{Kgm}^{2}$.

Moment Of Inertia Of Different Object:

  • A single particle : $$\mathrm{I}=\mathrm{mr}^{2}$$

    where: $m=$ mass of the particle

    $r=$ perpendicular distance of the particle from the axis about which moment of Inertia is to be calculated

  • For many particles (system of particles) :

    $$I=\sum_{i=1}^{n} m_{i} r_{i}^{2}$$

  • For a continuous object :

    $$\mathrm{I}=\int \mathrm{dmr} \mathrm{r}^{2}$$

    where $\mathrm{dm}=$ mass of a small element

    $r=$ perpendicular distance of the particle from the axis

  • For a larger object :

    $$\mathrm{I}=\int \mathrm{dI}_{\text {element }}$$

    where: $\mathrm{dI}=$ moment of inertia of a small element

Two Important Theorems On Moment Of Inertia :

  • Perpendicular Axis Theorem

    [Only applicable to plane lamina (that means for 2-D objects only)].

    When object is in $x-y$ plane: $$I_{z}=I_{x}+I_{y}$$

  • Parallel Axis Theorem

    (Applicable to any type of object):

    $$I_{AB}=I_{cm}+Md^{2}$$

    List of some useful formula :


Radius Of Gyration :

$$\mathrm{I}=\mathrm{MK}^{2}$$

Torque:

$$\vec{\tau}=\vec{r} \times \vec{F}$$

Relation between ’ $\tau$ ’ and ’ $\alpha$ ’ (for hinged object or pure rotation)

$$ \vec{\tau} _{ext/Hinge } = I _{Hinge} \vec{\alpha}$$

Where: $\vec{\tau} _{ext/Hinge }$= net external torque acting on the body about Hinge point

$\mathrm{I} _{\text {Hinge }}=$ moment of Inertia of body about Hinge point

$$F_{1t}=M_{1} a_{1t}=M_1 r_1 \alpha$$

$$F_{2 t}=M_{2} a_{2 t}=M_{2} r_{2} \alpha$$

$$\tau_{resultant}=F_{1t} r_{1}+F_{2t} r_{2}+\ldots$$

$$=M_{1} \alpha r_{1}^{2}+M_{2} \alpha r_{2}^{2}+$$

$$\tau_{\text {resultant/ external}}=\mathrm{I} \alpha$$

Rotational Kinetic Energy

$$ \text{K.E}=\frac{1}{2} I \omega^{2}$$

$$\vec{P}=M\vec{v} _{CM} \Rightarrow \vec{F} _{external} = M \vec{a} _{CM} $$

Net external force acting on the body has two parts tangential and centripetal.

$$ \Rightarrow F _C = ma _C = m \frac{v^2}{r _{CM}}=m \omega^{2} r _{cm} $$

$$ \Rightarrow F _t = ma _t = m\alpha r _{CM}$$

Rotational Equilibrium :

For translational equilibrium:

$$\Sigma F_{x}=0 \hspace{10mm}…(i)$$

$$\Sigma \mathrm{F}_{\mathrm{y}}=0 \hspace{10mm}…(ii)$$

The condition of rotational equilibrium is:

$$\Sigma \Gamma_{z}=0$$

Angular Momentum $(\vec{L})$:

  • Angular Momentum Of A Particle About A Point:

$$\vec{L} =\vec{r} \times \vec{P} \quad \Rightarrow \quad L=rp \sin \theta$$

$$|\vec{L}| =r_{\perp} \times P $$

$$|\vec{L}| =P_{\perp} \times r$$

  • Angular Momentum Of A Rigid Body Rotating About Fixed Axis :

$$\vec{L} _{H} = I _{H} \vec{\omega}$$

  • $\mathrm{L}_{\mathrm{H}}=$ angular momentum of object about axis $\mathrm{H}$.

  • $\mathrm{I}_{\mathrm{H}}=$ Moment of Inertia of rigid object about axis $\mathrm{H}$.

  • $\omega=$ angular velocity of the object.

  • Conservation of Angular Momentum:

    Angular momentum of a particle or a system remains constant if $\tau_{\mathrm{ext}}=0$ about that point or axis of rotation.

  • Relation between Torque and Angular Momentum

    $$\vec{\tau}=\frac{\mathrm{d} \vec{\mathrm{L}}}{\mathrm{dt}}$$

    Torque is change in angular momentum.

  • Impulse of Torque :

    $$\int \tau dt=\Delta J$$

    Where: $\Delta J$ is Change in angular momentum.

    For a rigid body, the distance between the particles remain unchanged during its motion i.e. $\mathrm{r}_{\mathrm{P} / \mathrm{Q}}=$ constant

  • For velocities:

$$V_P=\sqrt{V_Q^{2}+(\omega r)^{2}+2 V_Q \omega r \cos \theta}$$

  • For acceleration :

$\theta, \omega, \alpha$ are same about every point of the body (or any other point outside which is rigidly attached to the body).

Dynamics :

$$\vec{\tau} _{cm}=I _{cm} \vec{\alpha},$$

$$\vec F _{ext} = M \vec{a} _{cm}$$

$$\vec{P} _{system}=M \vec{v} _{cm}$$

$$\text{Total K.E.}=\frac{1}{2} M _{\mathrm{cm}^{2}}+\frac{1}{2} \mathrm{I} _{\mathrm{cm}} \omega^{2}$$

Angular momentum axis: $$A B=\vec{L} _{\text{about C.M.}} + \vec{L} _{\text {of C.M. about A B}}$$

$$\vec{L} _{AB}= I _{cm}\vec{\omega}+\vec{r _{cm}}\times M\vec{v} _{cm}$$

Simple Harmonic Motion

S.H.M.

$$\mathrm{F}=-\mathrm{kx}$$

General equation of S.H.M. is $x=A \sin (\omega t+\phi) ;(\omega t+\phi)$ is phase of the motion and $\phi$ is initial phase of the motion.

  • Angular Frequency $(\omega)$ :

$$\omega=\frac{2 \pi}{T}=2 \pi f$$

  • Time period $(\mathrm{T})$:

$$\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}}}$$

  • Speed :$$v=\omega \sqrt{A^{2}-x^{2}} $$

  • Acceleration : $$ a=-\omega^{2} x$$

  • Kinetic Energy (KE): $$\text{K.E}= \frac{1}{2} m v^{2}=\frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right)=\frac{1}{2} k\left(A^{2}-x^{2}\right)$$

  • Potential Energy (PE) : $$\text{ P.E}= \frac{1}{2} \mathrm{Kx}{ }^{2}$$

  • Total Mechanical Energy (TME)

$$\text{T.E = K.E. + P.E.}=\frac{1}{2} k\left(A^{2}-x^{2}\right)+\frac{1}{2} K x^{2}=\frac{1}{2} K A^{2} = \text{constant}$$

Spring-Mass System

(1)

$$\Rightarrow T=2 \pi \sqrt{\frac{m}{k}}$$

(2)

$$T=2 \pi \sqrt{\frac{\mu}{K}}$$

where: $\mu=\frac{m_1 m_2}{\left(m_1+m_2\right)}$ is known as reduced mass

Combination Of Springs

  • Series Combination : $$1 / k_{eq}=1 / k_{1}+1 / k_{2}$$

  • Parallel combination : $$k_{eq}=k_1+k_2$$

Simple Pendulum:

$$T=2 \pi \sqrt{\frac{\ell}{g}}=2 \pi \sqrt{\frac{\ell}{g_{\text {eff. }}}}$$

In accelerating Reference Frame $g_{\text {eff }}$ is net acceleration due to pseudo force and gravitational force.

Compound Pendulum / Physical Pendulum:

$$T=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mg} \ell}}$$

where, $\mathrm{I}=\mathrm{I}_{\mathrm{CM}}+\mathrm{m} \ell^{2} ; \ell$ is distance between point of suspension and centre of mass.

Torsional Pendulum:

$$T=2 \pi \sqrt{\frac{I}{C}} \quad$$

where, $C=$ Torsional constant

Superposition of SHM’s along the same direction

$$x_{1}=A_{1} \sin \omega t$$

$$x_{2}=A_{2} \sin (\omega t+\theta)$$

If equation of resultant $\mathrm{SHM}$ is taken as $$\mathrm{x}=\mathrm{A} \sin (\omega \mathrm{t}+\phi)$$

$$A=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \theta}$$

$$\tan \phi=\frac{A_{2} \sin \theta}{A_{1}+A_{2} \cos \theta}$$

Damped Oscillation

  • Damping force

$$\vec{\mathrm{F}}=-\mathrm{b} \vec{\mathrm{v}}$$

  • Equation of motion

$$\frac{\mathrm{mdv}}{\mathrm{dt}}=-\mathrm{kx}-\mathrm{bv}$$

where:

  • $b^{2}-4 m K>0$ over damping

  • $b^{2}-4 m K=0$ critical damping

  • $b^{2}-4 m K<0$ under damping

  • For small damping the solution is of the form.

$$x=\left(A_{0} e^{-b t / 2 m}\right) \sin \left[\omega^{\prime} t+\delta\right]$$

where $\omega^{\prime}=\sqrt{\left(\frac{k}{m}\right)-\left(\frac{b}{2 m}\right)^{2}}$

For small b

  • Angular Frequency: $$\omega^{\prime} \approx \sqrt{\mathrm{k} / \mathrm{m}},=\omega_{0}$$

  • Amplitude: $$A=A_{0} e^{\frac{-b t}{2 m}}$$

  • Energy $$E(t)=\frac{1}{2} K A^{2} e^{-b t / m}$$

  • Quality factor or $Q$ value: $$Q=2 \pi \frac{E}{|\Delta E|}=\frac{\omega^{\prime}}{2 \omega_{Y}}$$

where $, \omega^{\prime}=\sqrt{\frac{k}{m} \cdot \frac{b^{2}}{4 m^{2}}} \quad, \omega_{Y}=\frac{b}{2 m}$

Forced Oscillations And Resonance

External Force $$F(t)=F_{0} \cos \omega_{d} t$$

$$x(t)=A \cos \left(\omega_{d} t+\phi\right)$$

$$A=\frac{F_{0}}{\sqrt{\left(m^{2}\left(\omega^{2}-\omega_{d}^{2}\right)^{2}+\omega_{d}^{2} b^{2}\right)}}$$

$$\tan \phi=\frac{-v_{0}}{\omega_{d} x_{0}}$$

(a) Small Damping $$A=\frac{F_{0}}{m\left(\omega^{2}-\omega_{d}^{2}\right)}$$

(b) Driving Frequency Close to Natural Frequency $$A=\frac{F_{0}}{\omega_{d} b}$$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें