Semiconductor

Conductivity and Resistivity:

Category $\mathrm{P}(\pi-\mathrm{m})$ $\rho\left(\pi^{-1} \mathrm{~m}^{-1}\right)$
Conductors $10^{-2}-10^{-6}$ $10^{2}-10^{8}$
semiconductors $10^{-5}-10^{-6}$ $10^{5}-10^{-6}$
Insulators $10^{11}-10^{19}$ $10^{-11}-10^{-19}$

Charge Concentration and Current:

In case of intrinsic semiconductors

  • Mobility: $$\eta_{h}=\eta_{e}$$
  • In P type: $$\eta_{\mathrm{h}} \gg \eta_{\mathrm{e}}$$
  • Current: $$i=i_e+i_h$$
  • Mass Action Law: $$\eta_{\mathrm{e}} \eta_{\mathrm{n}}=\eta_{\mathrm{i}}^{2}$$
  • Number of electrons reaching from valence bond to conduction bond:

$$\eta=A T^{3 / 2} e^{-E g / 2 k T}$$

where: A is positive constant

  • Hall Effect equation: $$\sigma=e\left(\eta_e m_e+\eta_n \mu_n\right)$$

For p-type: $$\eta_{\mathrm{n}} \gg \eta_{\mathrm{e}}$$

For n-type $$\eta_{e} \gg \eta_{h}$$

  • Dynamic Resistance of P-N junction in forward biasing: $$R=\frac{\Delta V}{\Delta I}$$

Transistor

  • CB amplifier

(i) ac current gain: $$\alpha_c=\frac{\text { Samll change incollector current }\left(\Delta i_c \right)}{\text { Samll change incollector current }\left(\Delta i_e\right)}$$

(ii) dc current gain: $$\alpha_{d c}=\frac{\text { Collector current }\left(i_c \right)}{\text { Emitter current }\left(i_e\right)}$$

Value of $\alpha_{dc}$ lies between 0.95 to 0.99.

(iii) Voltage gain: $$A_{v}=\frac{\text { Change in output voltage }\left(\Delta V_{0}\right)}{\text { Change in input voltage }\left(\Delta V_{f}\right)}$$

$\Rightarrow A_{v}=a_{a c} \times$ Resistance gain

(iv) Power gain: $$dB =\frac{\text { Change inoutput power }\left(\Delta P_{0}\right)}{\text { Change in input voltage }\left(\Delta P_C \right)}$$

$\Rightarrow$ Power gain, $$dB = \mathrm{a}^{2} \times \text{Resistance gain}$$

(v) Phase difference (between output and input) : same phase

(vi) Application : For High frequency

CE Amplifier

(i) ac current gain: $$\beta_{ac}=\left(\frac{\Delta i_C}{\Delta i_b}\right) V_{CE}= \text{constant}$$

(ii) dc current gain: $$\beta_{dc}=\frac{i_c}{i_b}$$

(iii) Voltage gain : $$A_v=\frac{\Delta V_0}{\Delta V_i}=\beta_{ac} \times \text{Resistance gain}$$

(iv) Power gain: $$dB = \frac{\Delta P_0}{\Delta P_i}=\beta^2 ac \times \text{Resistance}$$

(v) Transconductance $\left(g_{m}\right)$ : The ratio of the change in collector in collector current to the change in emitter base voltage is called trans conductance i.e. $$g_{m}=\frac{\Delta i_{c}}{\Delta V_{E B}}$$

Also, $$g_{m}=\frac{A_{V}}{R_{L}} R_{L}= \text{Load resistance}$$

  • Relation between $\alpha$ and $\beta$:

$$\beta=\frac{\alpha}{1-\alpha}$$

$$\alpha=\frac{\beta}{1+\beta}$$

GATE:

P Q AND (Λ) OR (v) NAND (¬Λ) NOR (¬v) XOR (⊕) Conditional (⇒) Bi-conditional (⇔)
T T T T F F F T T
T F F T T F T F F
F T F T T F T T F
F F F F T T F T T


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें