Simple Harmonic Motion

S.H.M.:

$$\mathrm{F}=-\mathrm{kx}$$

General equation of S.H.M. is $$x=A \sin (\omega t+\phi)$$

$(\omega t+\phi)$ is phase of the motion and $\phi$ is initial phase of the motion.

Angular Frequency$(\omega)$ :

$$\omega=\frac{2 \pi}{T}=2 \pi f$$

Time period $(\mathrm{T}) :$

$$\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}}}$$

Speed :

$$v=\omega \sqrt{A^{2}-x^{2}} $$

Acceleration :

$$ a=-\omega^{2} x$$

Kinetic Energy (KE):

$$\text{KE} = \frac{1}{2} m v^{2}=\frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right)=\frac{1}{2} k\left(A^{2}-x^{2}\right)$$

Potential Energy (PE) :

$$\text{PE} =\frac{1}{2} \mathrm{Kx}{ }^{2}$$

Total Mechanical Energy (TME):

$$ \text{TE} =K . E .+P . E .=\frac{1}{2} k\left(A^{2}-x^{2}\right)+\frac{1}{2} K x^{2}=\frac{1}{2} K A^{2} \text{(which is constant)}$$

Spring-Mass System

(1)

$$\Rightarrow \quad T=2 \pi \sqrt{\frac{m}{k}}$$

(2)

$$T=2 \pi \sqrt{\frac{\mu}{K}}$$

where: $\mu=\frac{m_1 m_2}{\left(m_1+m_2\right)}$ known as reduced mass

Combination Of Springs:

  • Series Combination : $$1 / k_{eq}=1 / k_{1}+1 / k_{2}$$

  • Parallel combination : $$ k_{eq}=k_1+k_2$$

Simple Pendulum:

In accelerating Reference Frame: $$T=2 \pi \sqrt{\frac{\ell}{g}}=2 \pi \sqrt{\frac{\ell}{g_{\text {eff. }}}}$$

$g_{\text {eff }}$ is net acceleration due to pseudo force and gravitational force.

Compound Pendulum / Physical Pendulum:

Time period (T):

$$T=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mg} \ell}}$$

where, $\mathrm{I}=\mathrm{I}_{\mathrm{CM}}+\mathrm{m} \ell^{2} ; \ell$ is distance between point of suspension and centre of mass.

Torsional Pendulum

Time period $$(T): \quad T=2 \pi \sqrt{\frac{I}{C}}$$

where, $C=$ Torsional constant

Superposition of SHM:

Superposition of SHM’s along the same direction

$$x_{1}=A_{1} \sin \omega t$$

$$x_{2}=A_{2} \sin (\omega t+\theta)$$

If equation of resultant SHM is taken as: $$\mathrm{x}=\mathrm{A} \sin (\omega \mathrm{t}+\phi)$$

$$A=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos \theta}$$

$$ \tan \phi=\frac{A_{2} \sin \theta}{A_{1}+A_{2} \cos \theta}$$

Damped Oscillation

- Damping force

$$\vec{\mathrm{F}}=-\mathrm{b} \vec{\mathrm{v}}$$

- equation of motion is

$$\frac{\mathrm{mdv}}{\mathrm{dt}}=-\mathrm{kx}-\mathrm{bv}$$

  • Over Damping: $$b^{2}-4 m K>0$$
  • Critical Damping: $$b^{2}-4 m K=0$$
  • Under Damping: $$b^{2}-4 m K<0$$
  • For small damping the solution is of the form.

$$x=\left(A_{0} e^{-b t / 2 m}\right) \sin \left[\omega^{1} t+\delta\right]$$

Where $\omega^{\prime}=\sqrt{\left(\frac{k}{m}\right)-\left(\frac{b}{2 m}\right)^{2}}$

For small b

  • Angular Frequency: $$\omega^{\prime} \approx \sqrt{\mathrm{k} / \mathrm{m}},=\omega_{0}$$

  • Amplitude: $$A=A_{0} e^{\frac{-b t}{2 m}}$$

  • Energy: $$E(t)=\frac{1}{2} K A^{2} e^{-b t / m}$$

  • Quality factor or $Q$ value, $$Q=2 \pi \frac{E}{|\Delta E|}=\frac{\omega^{\prime}}{2 \omega_{Y}}$$

where $, \omega^{\prime}=\sqrt{\frac{k}{m} \cdot \frac{b^{2}}{4 m^{2}}} \quad, \omega_{Y}=\frac{b}{2 m}$

Forced Oscillations And Resonance

External Force $$F(t)=F_{0} \cos \omega_{d} t$$

$$x(t)=A \cos \left(\omega_{d} t+\phi\right)$$

$$A=\frac{F_{0}}{\sqrt{\left(m^{2}\left(\omega^{2}-\omega_{d}^{2}\right)^{2}+\omega_{d}^{2} b^{2}\right)}}$$

$$\tan \phi=\frac{-v_{0}}{\omega_{d} x_{0}}$$

(a) Small Damping: $$A=\frac{F_{0}}{m\left(\omega^{2}-\omega_{d}^{2}\right)}$$

(b) Driving Frequency Close to Natural Frequency: $$A=\frac{F_{0}}{\omega_{d} b}$$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें