String Wave

General Equation of Wave Motion:

$$ \frac{\partial^{2} y}{\partial t^{2}} = v^{2} \frac{\partial^{2} y}{\partial x^{2}} $$

$$ y(x, t) = f\left(t \pm \frac{x}{v}\right) $$

where $y(x, t)$ should be finite everywhere.

$\Rightarrow \quad f\left(t + \frac{x}{v}\right)$ represents a wave traveling in the $-x$-axis direction.

$\Rightarrow \quad f\left(t - \frac{x}{v}\right)$ represents a wave traveling in the $+x$-axis direction.

$$ y = A \sin (\omega t \pm k x + \phi) $$

  • Wave number (or propagation constant) ($k$):

$$ k = \frac{2 \pi}{\lambda} = \frac{\omega}{v} \quad (\text{rad m}^{-1}) $$

  • Phase of wave: The argument of the harmonic function ($\omega t \pm k x + \phi$) is called the phase of the wave.

  • Phase difference ($\Delta \phi$): difference in phases of two particles at any time $t$.

$$ \Delta \phi = \frac{2 \pi}{\lambda} \Delta x \quad \text{Also,} \quad \Delta \phi = \frac{2 \pi}{T} \Delta t $$

Speed of Transverse Wave Along a String/Wire:

$$ v = \sqrt{\frac{T}{\mu}} \quad \text{where} \quad T = \text{Tension}, \quad \mu = \text{mass per unit length} $$

Power Transmitted Along the String by a Sine Wave:

  • Average Power: $\langle P \rangle = 2 \pi^{2} f^{2} A^{2} \mu V$

  • Intensity: $I = \frac{\langle P \rangle}{s} = 2 \pi^{2} f^{2} A^{2} \rho V$

Reflection and Refraction of Waves:

$$y_{i} = A_{i} \sin \left(\omega t - k_{1} x\right)$$

  • If incident from rarer to denser medium ($v_{2} < v_{1}$):

$$y_{t} = A_{t} \sin \left(\omega t - k_{2} x\right)$$

$$y_{r} = -A_{r} \sin \left(\omega t + k_{1} x\right)$$

  • If incident from denser to rarer medium ($v_{2} > v_{1}$):

$$y_{t} = A_{t} \sin \left(\omega t - k_{2} x\right)$$

$$y_{r} = A_{r} \sin \left(\omega t + k_{1} x\right)$$

  • Amplitude of reflected and transmitted waves:

$$A_{r} = \frac{\left|k_{1} - k_{2}\right|}{k_{1} + k_{2}} A_{i}$$

$$A_{t} = \frac{2 k_{1}}{k_{1} + k_{2}} A_{i}$$

Standing/Stationary Waves:

$$y_{1} = A \sin \left(\omega t - k x + \theta_{1}\right)$$

$$y_{2} = A \sin \left(\omega t + k x + \theta_{2}\right)$$

$$y_{1} + y_{2} = \left[2 A \cos \left(k x + \frac{\theta_{2} - \theta_{1}}{2}\right)\right] \sin \left(\omega t + \frac{\theta_{1} + \theta_{2}}{2}\right)$$

The quantity $2 A \cos \left(k x + \frac{\theta_{2} - \theta_{1}}{2}\right)$ represents the resultant amplitude at $x$. At some positions, the resultant amplitude is zero; these are called nodes. At some positions, the resultant amplitude is $2A$; these are called antinodes.

  • Distance between successive nodes or antinodes $= \frac{\lambda}{2}$.

  • Distance between successive nodes and antinodes $= \frac{\lambda}{4}$.

  • All the particles in the same segment (portion between two successive nodes) vibrate in the same phase.

  • The particles in two consecutive segments vibrate in opposite phase.

  • Since nodes are permanently at rest, energy cannot be transmitted across them.

Vibrations of Strings (Standing Wave):

$\textbf{(a) Fixed at both ends:}$

  • Fixed ends will be nodes. So waves for which $L = \frac{\lambda}{2}$, $L = \frac{2\lambda}{2}$, $L = \frac{3\lambda}{2}$, etc.are possible, giving $$L = \frac{n\lambda}{2} \quad \text{or} \quad \lambda = \frac{2L}{n} \quad \text{where} \quad n = 1, 2, 3, \ldots$$

$$\text{As} \quad v = \sqrt{\frac{T}{\mu}} \quad f_{n} = \frac{n}{2L} \sqrt{\frac{T}{\mu}}, \quad n = \text{number of loops}$$

$\textbf{(b) String free at one end:}$

  • For the fundamental mode, $$L = \frac{\lambda}{4} \text{or} \lambda = 4L.$$
  • First overtone: $$L = \frac{3\lambda}{4},$$

hence $$\lambda = \frac{4L}{3},$$

so $$f_{1} = \frac{3}{4L} \sqrt{\frac{T}{\mu}}.$$

  • Second overtone: $$f_{2} = \frac{5}{4L} \sqrt{\frac{T}{\mu}},$$

so $$f_{n} = \frac{(n + \frac{1}{2})}{2L} \sqrt{\frac{T}{\mu}} = \frac{(2n + 1)}{4L} \sqrt{\frac{T}{\mu}}.$$

Doppler Effect for Sound:

  • Source moving towards the stationary observer: $$f’ = \frac{f}{1 - \frac{v_s}{v}}$$
  • Source moving away from the stationary observer: $$f’ = \frac{f}{1 + \frac{v_s}{v}}$$
  • Observer moving towards the stationary source: $$f’ = f \left(1 + \frac{v_o}{v}\right)$$
  • Observer moving away from the stationary source: $$f’ = f \left(1 - \frac{v_o}{v}\right)$$


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें