Wave Optics

Interference Of Waves Of Intensity $I_{1}$ and $I_{2}$ :

Resultant intensity,

$$I=I_1+I_2+2\sqrt{I_1I_2}\hspace{2mm} \cos(\Delta\phi)$$

where, $\Delta \phi=$ phase difference.

For Constructive Interference :

$$I_{\max }=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}$$

For Destructive interference :

$$ I_{\min }=\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}$$

If sources are incoherent : $I=I_1+I_2$, at each point.

YDSE:

Path difference, $\Delta p=S_{2} P-S_{1} P=d \sin \theta$

$$\begin{array}{ll}\text { if } & d<D D \quad=\frac{d y}{D} \\ \text { if } & y<D\end{array}$$

for maxima,

$$\Delta p=n \lambda \quad \Rightarrow \quad y=n \beta \quad n = 0, \pm 1 , \pm 2, \ldots$$

for minima

$$ \begin{aligned} & \Delta p=\quad \Delta p= \begin{cases}(2 n-1) \frac{\lambda}{2} & n=1,2,3 \ldots \\ (2 n+1) \frac{\lambda}{2} & n=-1,-2,-3 \ldots \end{cases} \\ \\ & \Rightarrow \quad y= \begin{cases}(2 n-1) \frac{\beta}{2} & n=1,2,3 \ldots \\ (2 n+1) \frac{\beta}{2} & n=-1,-2,-3 \ldots \end{cases} \end{aligned} $$

where, fringe width $\beta=\frac{\lambda D}{d}$

Here, $\lambda=$ wavelength in medium.

Highest order maxima :

$$ \mathrm{n}_{\max }=\left[\frac{\mathrm{d}}{\lambda}\right]$$

Total number of maxima $=2 \mathrm{n}_{\max }+1$

Highest order minima :

$$\mathrm{n}_{\max }=\left[\frac{\mathrm{d}}{\lambda}+\frac{1}{2}\right]$$

Total number of minima $=2 \mathrm{n}_{\max }$.

Intensity on Screen :

$$ I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos (\Delta \phi)$$

where, $\Delta \phi=\frac{2 \pi}{\lambda} \Delta p$

If $I_1=I_2,\quad{I= I_1} \cos^2(\frac{\Delta\phi}{2})$

YDSE with two wavelengths $\lambda_{1} $ and $ \lambda_{2}$:

The nearest point to central maxima where the bright fringes coincide:

$$y=n_{1} \beta_{1}=n_{2} \beta_{2}$$

The nearest point to central maxima where the two dark fringes coincide,

$$y=\left(n_ {1}-\frac{1}{2}\right) \beta_{1}= \left(n_ {2}-\frac{1}{2} \right) \beta_{2}$$

Optical Path Difference

$$\Delta \mathrm{p}_{\mathrm{opt}}=\mu \Delta \mathrm{p} $$

$$\Delta \phi=\frac{2 \pi}{\lambda} \Delta \mathrm{p}=\frac{2 \pi}{\lambda_{\text {vacuum }}} \Delta \mathrm{p}_{\text {opt. }} . $$

$$\Delta=(\mu-1) \mathrm{t} . \frac{\mathrm{D}}{\mathrm{d}}=(\mu-1) \mathrm{t} \frac{\mathrm{B}}{\lambda} .$$

YDSE With Oblique Incidence

In YDSE, ray is incident on the slit at an inclination of $\theta_{0}$ to the axis of symmetry of the experimental set-up

We obtain central maxima at a point where, $\Delta p=0$.

$$\text { or } \quad \theta_{2}=\theta_{0} \text {. }$$

This corresponds to the point $\mathrm{O}^{\prime}$ in the diagram.

Hence we have path difference.

$$ \Delta p = \begin{cases} d(\sin \theta_0 + \sin \theta) & \text{for points above } O \\ d(\sin \theta_0 - \sin \theta) & \text{for points between } O \text{ and } O’ \\ d(\sin \theta - \sin \theta_0) & \text{for points below } O' \end{cases} $$

Thin-Film Interference

For interference in reflected light $ 2 \mu \mathrm{d}$

$$= \begin{cases}n \lambda & \text { for destructive interference } \\ \left(n+\frac{1}{2}\right) \lambda & \text { for constructive interference }\end{cases}$$

For interference in transmitted light $\quad 2 \mu \mathrm{d}$

$$= \begin{cases}n \lambda & \text { for constructive interference } \\ \left(n+\frac{1}{2}\right) \lambda & \text { for destructive interference }\end{cases}$$

Polarisation:

$$\mu=\tan \theta$$

Where $\theta$ is brewster’s angle

$\theta \rho+\theta_{r}=90^{\circ}$ (reflected and refracted rays are mutually perpendicular.)

Law of Malus

$$I = I_0 \cos^2(\theta) = KA^2\cos^2(\theta)$$

Optical Activity

$$[\alpha]_{t}^{\lambda}{ }^{\circ} \mathrm{C}=\frac{\theta}{\mathrm{L} \times \mathrm{C}}$$

$\theta=$ rotation in length $L$ at concentration $C$.

Diffraction

  • $\quad a \sin \theta=(2 m+1) / 2$ for maxima. where $m=1,2,3 \ldots \ldots$

  • $\quad \sin \theta=\frac{m \lambda}{a}, m= \pm 1, \pm 2, \pm 3 \ldots \ldots \ldots$. for minima.

  • $\quad$ Linear width of central maxima $=\frac{2 \mathrm{~d} \lambda}{\mathrm{a}}$

  • $\quad$ Angular width of central maxima $=\frac{2 \lambda}{a}$

  • $\quad I=I_{0}\left[\frac{\sin \beta / 2}{\beta / 2}\right]^{2}$ where $\beta=\frac{\pi a \sin \theta}{\lambda}$

Resolving power:

$$\mathrm{R}=\frac{\lambda}{\lambda_{2}-\lambda_{1}}=\frac{\lambda}{\Delta \lambda}$$

where, $\lambda=\frac{\lambda_{1}+\lambda_{2}}{2}, \quad \Delta \lambda=\lambda_{2}-\lambda_{1}$

Davisson–Germer experiment:

The Davisson–Germer experiment was a 1923-27 experiment by Clinton Davisson and Lester Germer at Western Electric (later Bell Labs), in which electrons, scattered by the surface of a crystal of nickel metal, displayed a diffraction pattern.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें