Work Power And Energy

Work Done By Constant Force :

$$\mathbf{W}=\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{s}}$$

Work Done By Multiple Forces:

$$ \Sigma \vec{F}=\vec{F_1}+\vec{F_2}+\vec{F_3}+\ldots \ldots $$

$$ W=[\Sigma \vec{F}] \cdot \vec{s}$$

$$ W=\vec{F_1} \cdot \vec{s}+\vec{F_2} \cdot \vec{s}+\vec{F_3} \cdot \vec{s}+\ldots$$

$$ W=W_{1}+W_{2}+W_{3}+\ldots$$

Work Done By A Variable Force

The work done $(W)$ by a variable force $(F(x))$ as an object moves from position $x_1$ to position $x_2$ is given by:

$$W = \int_{x_1}^{x_2} F(x) dx$$

Where:

$W$ is the work done. $F(x)$ is the variable force as a function of position x. $x_1$ and $x_2$ are the initial and final positions, respectively.

Relation Between Momentum and Kinetic Energy:

$$\mathrm{K}=\frac{\mathrm{P}^{2}}{2 \mathrm{~m}} \text { and } \mathrm{P}=\sqrt{2 \mathrm{mK}} ; \mathrm{P}=\text { linear momentum }$$

Potential Energy:

$$\int_{U_{1}}^{U_{2}} d U=-\int_{r_{1}}^{r_{2}} \vec{F} \cdot d \vec{r} \quad \text { i.e., } $$

$$U_{2}-U_{1}=-\int_{r_{1}}^{r_{2}} \vec{F} \cdot d \vec{r}=-W$$

$$U=-\int_{\infty}^{r} \vec{F} \cdot d \vec{r}=-W$$

Conservative Forces:

$$\mathrm{F}=-\frac{\partial \mathrm{U}}{\partial \mathrm{r}}$$

Work-Energy Theorem:

$$W_{C}+W_NC+W_PS=\Delta K$$

Modified Form of Work-Energy Theorem:

$$W_{C}=-\Delta U$$

$$W_{NC}+W_{PS}=\Delta K+\Delta U$$

$$W_{NC}+W_{PS}=\Delta E$$

Conservation of Momentum

$$\sum \mathbf{p} _{\text{initial}} = \sum \mathbf{p} _{\text{final}}$$

Power:

The average power ( $\bar{P}$ or $P_{a v}$ ) delivered by an agent is given by $\bar{P}$ or

$$P_{a v}=\frac{W}{t}$$

$$P=\frac{\vec{F} \cdot d \vec{S}}{d t}=\vec{F} \cdot \frac{d \vec{S}}{d t}=\vec{F} \cdot \vec{V}$$

Impulse:

Impulse of a force $F$ action on a body is defined as :-

$$\vec{J}=\int_{t_{i}}^{t_{f}} F d t \quad \vec{J}=\Delta \vec{P}$$

Impulse - Momentum Theorem

Important points :

(i). Gravitational force and spring force are always non-impulsive. (ii). An impulsive force can only be balanced by another impulsive force.

Coefficient Of Restitution (e):

$$e=\frac{\text { Impulse of reformation }}{\text { Impulse of deformation }}=\frac{\int F_{r} d t}{\int F_{d} d t}$$

$$=\frac{\text { Velocity of separation along line of impact }}{\text { Velocity of approach along line of impact }}$$

(a) e=1

$\Rightarrow$ Impulse of Reformation =Impulse of Deformation

$\Rightarrow$ Velocity of separation $=$ Velocity of approach

$\Rightarrow$ Kinetic Energy may be conserved

$\Rightarrow$ Elastic collision.

(b) e = 0

$\Rightarrow$ Impulse of reformation $=0$

$\Rightarrow$ Velocity of separation $=0$

$\Rightarrow$ Kinetic Energy is not conserved

$\Rightarrow$ Perfectly Inelastic collision.

(c) 0 < e <1

$\Rightarrow$ Impulse of Reformation $<$ Impulse of Deformation

$\Rightarrow$ Velocity of separation $<$ Velocity of approach

$\Rightarrow$ Kinetic Energy is not conserved

$\Rightarrow$ Inelastic collision.

Variable Mass System :

If a mass is added or ejected from a system, at rate $\mu \mathrm{kg} / \mathrm{s}$ and relative velocity $\vec{v_{rel}}$ (w.r.t. the system), then the force exerted by this mass on the system has magnitude $\mu\left|\vec{v}_{\text {rel }}\right|$.

Thrust Force $\left(\vec{F}_{t}\right)$:

$$\vec{F_t}=\vec{v_{rel}}\left(\frac{dm}{dt}\right)$$

Rocket Propulsion :

If gravity is ignored and initial velocity of the rocket $u=0$;

$$v=v_{r} \ln \left(\frac{m_{0}}{m}\right)$$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें