Unit 2 Solutions (Intext Questions-1)

Intext Questions

2.1 Calculate the mass percentage of benzene $({C_6} {H_6})$ and carbon tetrachloride $({CCl_4})$ if $22 {~g}$ of benzene is dissolved in $122 {~g}$ of carbon tetrachloride.

Show Answer

Answer

Mass percentage of ${C_6} {H_6}$ $=\dfrac{\text { Mass of } {C_6} {H_6}}{\text { Total mass of the solution }} \times 100 \% $

$$ \begin{aligned} & =\dfrac{\text { Mass of } {C_6} {H_6}}{\text { Mass of } {C_6} {H_6}+\text { Mass of } {CCl_4}} \times 100 \% \\ & =\dfrac{22}{22+122} \times 100 \% \\ & =15.28 \% \end{aligned} $$

Mass percentage of ${CCl_4}$ $ =\dfrac{\text { Mass of } {CCl_4}}{\text { Total mass of the solution }} \times 100 \% $

Mass percentage of ${CCl_4}$ $ =\dfrac{\text { Mass of } {CCl_4}}{\text { Mass of } {C_6} {H_6}+\text { Mass of } {CCl_4}} \times 100 \% $

$ \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad =\dfrac{122}{22+122} \times 100 \%$

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad=84.72 \%$

Alternatively,

Mass percentage of ${CCl_4}=(100-15.28) \%$

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad=84.72 \%$

2.2 Calculate the mole fraction of benzene in solution containing $30 \%$ by mass in carbon tetrachloride.

Show Answer

Answer

Let the total mass of the solution be $100 {~g}$ and the mass of benzene be $30 {~g}$.

$\therefore$ Mass of carbon tetrachloride $=(100-30) {g}$ $=70 {~g}$

Molar mass of benzene $({C_6} {H_6})=(6 \times 12+6 \times 1) {g} {mol}^{-1}$ $=78 {~g} {~mol}^{-1}$

$\therefore$ Number of moles of ${C_6} {H_6}=\dfrac{30}{78} {~mol}$ $=0.3846 {~mol}$

Molar mass of carbon tetrachloride $({CCl_4})=1 \times 12+4 \times 35.5$ $=154 {~g} {~mol}^{-1}$

$\therefore$ Number of moles of ${CCl_4}=\dfrac{70}{154} {~mol}$ $=0.4545 {~mol}$

$ \begin{aligned} &\text {Thus, the mole fraction of }{C_6} {H_6} \text { is given as } =\dfrac{\text { Number of moles of } {C_6} {H_6}}{\text { Number of moles of } {C_6} {H_6}+\text { Number of moles of } {CCl_4}} \end{aligned} $

$\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad=\dfrac{0.3846}{0.3846+0.4545}$

$ \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad= 0.458$

2.3 Calculate the molarity of each of the following solutions:

(a) $30 {~g}$ of ${Co}({NO_3})_{2} .6 {H_2} {O}$ in $4.3 {~L}$ of solution

(b)30 ${mL}$ of $0.5 {M} {H_2} {SO_4}$ diluted to $500 {~mL}$.

Show Answer

Answer

Molarity is given by:

$$ \text { Molarity }=\dfrac{\text { Moles of solute }}{\text { Volume of solution in litre }} $$

(a) Molar mass of ${Co}({NO_3})_{2} \cdot 6 {H_2} {O}=59+2(14+3 \times 16)+6 \times 18$ $=291 {~g} {~mol}^{-1}$

$\therefore$ Moles of ${Co}({NO_3})_{2} \cdot 6 {H_2} {O}=\dfrac{30}{291} {~mol}$ $=0.103 {~mol}$

Therefore, molarity $=\dfrac{0.103 {~mol}}{4.3 {~L}}$ $=0.023\hspace{0.5mm} {M}$

(b) Number of moles present in $1000 {~mL}$ of $0.5 {M} {H_2} {SO_4}=0.5 {~mol}$

$\therefore$ Number of moles present in $30 {~mL}$ of $0.5 {M} {H_2} {SO_4}=\dfrac{0.5 \times 30}{1000} {~mol}$ $=0.015 {~mol}$

Therefore, molarity $ =\dfrac{0.015}{0.5 {~L}} {~mol} $ $=0.03 {M}$

2.4 Calculate the mass of urea $({NH_2} {CONH_2})$ required in making $2.5 {~kg}$ of 0.25 molal aqueous solution.

Show Answer

Answer

Molar mass of urea $({NH_2} {CONH_2})=2(1 \times 14+2 \times 1)+1 \times 12+1 \times 16$ $=60 {~g} {~mol}^{-1}$

0.25 molar aqueous solution of urea means: $1000 {~g}$ of water contains $0.25 {~mol}=(0.25 \times 60) {g}$ of urea

$ \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad\quad\quad \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad= 15 {~g}$ of urea

That is, $(1000+15) {g}$ of solution contains $15 {~g}$ of urea

Therefore, $2.5 {~kg}(2500 {~g})$ of solution contains $ =\dfrac{15 \times 2500}{1000+15} {~g} $

$\quad\quad \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad\quad\quad \quad\quad \quad\quad \quad =36.95 {~g}$

$ \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad \quad\quad\quad\quad \quad\quad \quad\quad \quad = 37 {~g}$ of urea (approximately)

Hence, mass of urea required $=37 {~g}$

Note : There is a slight variation in this answer and the one given in the NCERT textbook.

2.5 Calculate (a)molality (b)molarity and (c)mole fraction of ${KI}$ if the density of $20 \%$ (mass/mass) aqueous ${KI}$ is $1.202 {~g} {~mL}^{-1}$.

Show Answer

Answer

(a) Molar mass of ${KI}=39+127=166 {~g} {~mol}^{-1}$

$20 \%$ (mass/mass) aqueous solution of ${KI}$ means $20 {~g}$ of ${KI}$ is present in $100 {~g}$ of solution.

That is,$20 {~g}$ of KI is present in $(100-20) {g}$ of water $=80 {~g}$ of water

Therefore, molality of the solution $ =\dfrac{\text { Moles of KI }}{\text { Mass of water in } {kg}} $

$ \quad\quad \quad\quad \quad\quad \quad\quad \quad \quad \quad \qquad = \dfrac{\dfrac{20}{166}}{0.08} {~m}$ $=1.506 {~m}$

$\quad\quad \quad\quad \quad\quad \quad \quad \quad \qquad=1.51 {~m}$ (approximately)

(b) It is given that the density of the solution $=1.202 {~g} {~mL}^{-1}$

$$ Volume=\dfrac{\text { Mass }}{\text { Density }} $$

$$ \quad\quad \quad\qquad=\dfrac{100 {~g}}{1.202 {~g} {~mL}^{-1}}$$

$$\quad\quad \quad\qquad=83.19 {~mL}$$

$$\quad\quad \quad\qquad=83.19 \times 10^{-3} {~L}$$

Therefore, molarity of the solution $ =\dfrac{\dfrac{20}{166} {~mol}}{83.19 \times 10^{-3} {~L}} $

$\quad\quad \quad\qquad\quad\quad \qquad\quad \quad\qquad=1.45\hspace{0.5mm} {M}$

(c) Moles of KI $ =\dfrac{20}{166}=0.12 {~mol} $

Moles of water $ =\dfrac{80}{18}=4.44 {~mol} $

Therefore, mole fraction of ${KI}$ $ =\dfrac{\text { Moles of KI }}{\text { Moles of KI }+ \text { Moles of water }} $ $ =\dfrac{0.12}{0.12+4.44} =0.0263$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें