Unit 3 Electrochemistry (Intext Questions-2)

Intext Questions

3.4 Calculate the potential of hydrogen electrode in contact with a solution whose ${pH}$ is 10 .

Show Answer

Answer

For hydrogen electrode, ${H}^{+}+{e}^{-} \longrightarrow \frac{1}{2} {H_2} \text {, it is given that } {pH}=10$

$\therefore\left[{H}^{+}\right]=10^{-10} {M}$

Now, using Nernst equation:

$ {H_{({H}^{+} / \frac{1}{2} {H_2} )}}=E_{({H}^{+} \ \frac{1}{2} {H_2} )}^{\ominus}-\frac{{R} T}{n {~F}} \ln \frac{1}{ [{H}^{+} ]}$

$\quad\quad\quad\quad\quad\quad =E_{({H}^{+} / \frac{1}{2} {H_2})}^{\ominus}-\frac{0.0591}{1} \log \frac{1}{[{H}^{+}]} $

$\quad\quad\quad\quad\quad\quad=0-\frac{0.0591}{1} \log \frac{1}{[10^{-10}]} $

$\quad\quad\quad\quad\quad\quad=-0.0591 \times 10 $

$\quad\quad\quad\quad\quad\quad=-0.591 {~V}$

3.5 Calculate the emf of the cell in which the following reaction takes place:

${Ni}({s})+2 {Ag}^{+}(0.002 {M}) \longrightarrow {Ni}^{2+}(0.160 {M})+2 {Ag}({s})$

Given that $E_{\text {cell }}^{o}=1.05 {~V}$

Show Answer

Answer

Applying Nernst equation we have:

$$ \begin{aligned} & E_{\text {(cell) }}=E_{\text {(cell) }}^{\ominus}-\frac{0.0591}{n} \log \frac{\left[{Ni}^{2+}\right]}{\left[{Ag}^{+}\right]^{2}} \\ \\ & \quad\quad\quad\quad=1.05-\frac{0.0591}{2} \log \frac{(0.160)}{(0.002)^{2}} \\ \\ & \quad\quad\quad\quad=1.05-0.02955 \log \frac{0.16}{0.000004} \\ \\ & \quad\quad\quad\quad=1.05-0.02955 \log 4 \times 10^{4} \\ \\ & \quad\quad\quad\quad=1.05-0.02955(\log 10000+\log 4) \\ \\ & \quad\quad\quad\quad=1.05-0.02955(4+0.6021) \\ \\ & \quad\quad\quad\quad=0.914 {~V} \end{aligned} $$

3.6 The cell in which the following reaction occurs :

$ 2 {Fe}^{3+}({aq})+2 {I}^{-}({aq}) \rightarrow 2 {Fe}^{2+}({aq})+{I_2}({~s})$ has $E_{\text {cell }}^{{o}}=0.236 {~V}$ at $298 {~K}$.

Calculate the standard Gibbs energy and the equilibrium constant of the cell reaction.

Show Answer

Answer

Here, $n=2, E_{\text {cell }}^{\ominus}=0.236 {~V},{ _{T}}=298 {~K}$

We know that:

$\Delta_{r} {G}^{\ominus}=-n {FE_\text {cell }}^{\ominus}$

$\quad\quad\quad\quad=-2 \times 96487 \times 0.236$

$\quad\quad\quad\quad=-45541.864 {~J} {~mol}^{-1}$

$\quad\quad\quad\quad=-45.54 {~kJ} {~mol}^{-1}$

Again, $\Delta_r G^{\ominus}= -2.303 R T \log K_{c}$

$\quad\Rightarrow \log K_{{c}}=-\frac{\Delta_{r} G^{\ominus}}{2.303 {R} T}$

$\quad\quad\quad\quad\quad\quad =-\frac{-45.54 \times 10^{3}}{2.303 \times 8.314 \times 298} $

$\quad\quad\quad\quad\quad\quad=7.981$

$\therefore K_{{c}}=$ Antilog (7.981)

$\quad\quad\quad\quad=9.57 \times 10^{7}$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें