Unit 4 Chemical Kinetics (Intext Questions-4)

Intext Questions

4.7 What will be the effect of temperature on rate constant ?

Show Answer

Answer

The rate constant of a reaction is nearly doubled with a $10^{\circ}$ rise in temperature. However, the exact dependence of the rate of a chemical reaction on temperature is given by Arrhenius equation,

$k=\mathrm{Ae}^{-E \mathrm{a} / R T}$

Where,

$A$ is the Arrhenius factor or the frequency factor

Tis the temperature

Ris the gas constant

$E_{a}$ is the activation energy

4.8 The rate of the chemical reaction doubles for an increase of $10 \mathrm{~K}$ in absolute temperature from 298K. Calculate $E_{\text {a }}$.

Show Answer

Answer

It is given that $T_{1}=298 \mathrm{~K}$

$\therefore T_{2}=(298+10) \mathrm{K}$

$=308 \mathrm{~K}$

We also know that the rate of the reaction doubles when temperature is increased by $10^{\circ}$.

Therefore, let us take the value of $k_{1}=k$ and that of $k_{2}=2 k$

Also, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

Now, substituting these values in the equation:

$\log \frac{k_{2}}{k_{1}}=\frac{E_{\mathrm{a}}}{2.303 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right]$

We get:

$\log \frac{2 k}{k}=\frac{E_{\mathrm{a}}}{2.303 \times 8.314}\left[\frac{10}{298 \times 308}\right]$

$\Rightarrow \log 2=\frac{E_{\mathrm{a}}}{2.303 \times 8.314}\left[\frac{10}{298 \times 308}\right]$

$\Rightarrow E_{\mathrm{a}}=\frac{2.303 \times 8.314 \times 298 \times 308 \times \log 2}{10}$

$=52897.78 \mathrm{~J} \mathrm{~mol}^{-1}$

$=52.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Note: There is a slight variation in this answer and the one given in the NCERT textbook.

4.9 The activation energy for the reaction $ 2 \mathrm{HI}(\mathrm{g}) \rightarrow \mathrm{H_2}+\mathrm{I_2}(\mathrm{~g}) $ is $209.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $581 \mathrm{~K}$.Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy?

Show Answer

Answer

In the given case:

$E_{\mathrm{a}}=209.5 \mathrm{~kJ} \mathrm{~mol}^{-1}=209500 \mathrm{~J} \mathrm{~mol}^{-1}$

$T=581 \mathrm{~K}$

$R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Now, the fraction of molecules of reactants having energy equal to or greater than activation energy is given as: $x=e-E a / R T \Rightarrow \operatorname{In} x=-E$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें