NEET Solved Paper 2014 Question 10

Question: Using the Gibbs energy change $ \Delta {G^{{}^\circ }}=+63.3kJ $ for the following reaction, $ Ag _2CO _3(s)r,2A{g^{+}}(aq)+CO_3^{2-}(aq) $ the $ K _{sp} $ of $ Ag _2CO _3(s) $ in water at $ 25^{o}C $ is $ (R=8.314J{K^{-1}}mo{l^{-1}}) $ [AIPMT 2014]

Options:

A) $ 3.2\times {10^{-26}} $

B) $ 8.0\times {10^{-12}} $

C) $ 2.9\times {10^{-3}} $

D) $ 7.9\times {10^{-2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \Delta {G^{{}^\circ }} $ is related to $ K _{sp} $ by the equation, $ \Delta {G^{{}^\circ }}=-2.303RT,\log K _{sp} $ Given, $ \Delta {G^{{}^\circ }}=+,63.3\text{kJ=63}\text{.3}\times 1{0^{3}}J $

Thus, substitute $ \Delta {G^{{}^\circ }}=63.3\times 10^{3}\text{J,} $ $ R=8.314J{K^{-1}}mo{l^{-1}} $ and $ T=298K,[25+273K] $ into the .

above equation to get, $ 63.3\times 10^{3}=-2.303\times 8.314\times 298,log,K _{sp} $

$ \therefore $ $ \log ,K _{sp}=-11.09 $

$ \Rightarrow ,K _{sp}=\text{antilog(-11}\text{.09)} $ $ K _{sp}=8.0\times {10^{-12}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें