NEET Solved Paper 2014 Question 6

Question: A balloon with mass m is descending down with an acceleration a (where a < g). How much mass should be removed from it so that it starts moving up with an acceleration a? [AIPMT 2014]

Options:

A) $ \frac{2ma}{g+a} $

B) $ \frac{2ma}{g-a} $

C) $ \frac{ma}{g+a} $

D) $ \frac{ma}{g-a} $

Show Answer

Answer:

Correct Answer: A

Solution:

When the balloon is descending down with acceleration a So,

$ mg-B=m\times a, $ ..(i) [B $\rightarrow$ Buoyant force] Here,

we should assume that while removing same mass the volume of balloon and hence buoyant force will not change.

Let the new mass of the balloon is m'

$ \Rightarrow $ So, mass removed $ (m-m’) $

$ \Rightarrow $ So, $ B=m’g=m’\times a, $ ..(ii)

$ \Rightarrow $ Solving Eqs. (i) and (ii), $ mg-B=m\times a $ $ B-m’g=m’\times a $ $ mg-m’g=ma+m’a $ $ (mg-ma)=m’(g+a)=m(g-a)=m’(g+a) $ $ m’=\frac{m(g-a)}{g+a} $

$ \Rightarrow $ So mass removed = m - m’ $ =m[ \frac{1-(g-a)}{(g+a)} ]=m[ \frac{(g+a)-(g-a)}{(g+a)} ] $ $ =m[ \frac{g+a-g+a}{g+a} ]\Rightarrow \Delta m=\frac{2ma}{g+a} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें