Neet Solved Paper 2015 Question 9

Question: Which of the following options represents the correct bond order?

Options:

A) $ O_2^{-}>O _2>O_2^{+} $

B) $ O_2^{-}<O _2<O_2^{+} $

C) $ O_2^{-}>O _2<O_2^{+} $

D) $ O_2^{-}\lt O _2 \gt O_2^{+} $

Show Answer

Answer:

Correct Answer: B

Solution:

Bond order of $ O_2^{-} $

$O_2^{-}=\sigma 1s^{2},\overset{*}{\mathop{\sigma }},1s^{2},\sigma 2s^{2}$ $\overset{*}{\mathop{\sigma }},2s^{2}\sigma {2p_z}^{2}(\pi {2p_x}^{2}=\pi 2p_y^{2}) ({{\pi }^*}{2p_x}^2$ =${{\pi }^*}{2p_y}^1) $

Bond order $ =\frac{\text{number of electrons in BMO}-\text{number of elections ABMO}}{2} $

$ =\frac{10-7}{2}=\frac{3}{2}=1.5 $

$ O_2^{+}=\sigma 1s^{2},\overset{*}{\mathop{\sigma }},1s^{2},\sigma 2s^{2},$ $\overset{*}{\mathop{\sigma }},2s^{2}\sigma 2p_z^{2} $ $ (\pi 2p_x^{2}=\pi {2p_y}^{2})({{\pi }^{*}}2p_x^{1}$ =${{\pi }^{*}}{2p_y}^{0}) $

$ BO=\frac{10-5}{2}=\frac{5}{2}=2.5 $

$ O _2=\sigma 1s^{2}\overset{*}{\mathop{\sigma }},1s^{2},\sigma 2s^{2},$ $\overset{*}{\mathop{\sigma }},2s^{2}\sigma 2p_z^{2}(\pi 2p_x^{2}=\pi 2p_y^{2}) $ $ (\overset{*}{\mathop{\pi }},{2p_x}^{1}$ =$\overset{*}{\mathop{\pi }},{2p_y}^{1}) $

$ BO=\frac{10-6}{2}=\frac{4}{2}=2 $ So, the correct sequence is $ O_2^{-}<O _2<O_2^{+} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें