Neet Solved Paper 2015 Question 1

Question: If energy (E), velocity [v] and time (T) are chosen as the fundamental quantities, the dimensional formula of surface tension will be

Options:

A) $ [E{v^{-2}}{T^{-1}}] $

B) $ [E{v^{-1}}{T^{-2}}] $

C) $ [E{v^{-2}}{T^{-2}}] $

D) $ [{E^{-2}}{v^{-1}}{T^{-3}}] $

Show Answer

Answer:

Correct Answer: C

Solution:

We know that Surface tension $ \text{(S)=}\frac{\text{Force }[\text{ F }]}{\text{Lenght }[\text{ L }]} $

So, $ [S]=\frac{[MK{T^{-2}}]}{[L]}=[ML^{0}{T^{-2}}] $ Energy (E) = Force $ \times $ displacement

$ \Rightarrow ,[E]=[ML^{2}T^{2}] $ Velocity (v) $ \text{=}\frac{displacement}{time} $

$ \Rightarrow ,[v]=[L{T^{-1}}] $ A.s, $ S\propto E^{a}v^{b}T^{c} $ where, a, b, c are constants. From the principle of homogeneity, [LHS] = [RHS]

$ \Rightarrow ,[ML^{0}{T^{-2}}]={{[ML^{2}{T^{-2}}]}^{a}}{{[L{T^{-1}}]}^{b}}{{[T]}^{c}} $

$ \Rightarrow ,[ML^{0}{T^{-2}}]=[M^{a}{L^{2a+b}}{T^{-2a-b+c}}] $

Equating the power on both sides, we get $ a=1,2a+b=0,b=-2 $

$ \Rightarrow -2a-b+c=-2 $

$ \Rightarrow \ c=(2a+b)-2=0-2=-2 $

So $ [S],=[E{v^{-2}}{T^{-2}}],=[E{v^{-2}}{T^{-2}}] $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें