Neet Solved Paper 2015 Question 24

Question: A particle is executing SHM along a straight line. Its velocities at distances $ x _1 $ and $ x _2 $ from the mean position are $ v _1 $ and $ v _2 $ , respectively. Its time period is

Options:

A) $ 2\pi \sqrt{\frac{x_1^{2}+x_2^{2}}{v_1^{2}+v_2^{2}}} $

B) $ 2\pi \sqrt{\frac{x_2^{2}-x_1^{2}}{v_1^{2}-v_2^{2}}} $

C) $ 2\pi \sqrt{\frac{v_1^{2}+v_2^{2}}{x_1^{2}+x_2^{2}}} $

D) $ 2\pi \sqrt{\frac{v_1^{2}-v_2^{2}}{x_1^{2}-x_2^{2}}} $

Show Answer

Answer:

Correct Answer: B

Solution:

Let A be the amplitude of oscillation then $ v_1^{2}={{\omega }^{2}}(A^{2}-x_1^{2}) $ …(i)

$ v_2^{2}={{\omega }^{2}}(A^{2}-x^{2})\ $ …(ii)

Subtracting Eq. (ii) from Eq. (i),

we get $ v_1^{2}-v_2^{2}={{\omega }^{2}}(x_2^{2}-x_1^{2}) $

$ \Rightarrow \omega =\sqrt{\frac{v_1^{2}-v_2^{2}}{x_2^{2}-x_1^{2}}} $

$ \Rightarrow \frac{2\pi }{T}=\sqrt{\frac{v_1^{2}-v_2^{2}}{x_2^{2}-x_1^{2}}} $

$ \Rightarrow \ T=2\pi \sqrt{\frac{x_2^{2}-x_1^{2}}{v_1^{2}-v_2^{2}}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें