Neet Solved Paper 2015 Question 33

Question: A conducting square frame of side a and a long straight wire carrying current $ I $ are located in the same plane as shown in the figure. The frame moves to the right with a constant velocity V. The emf induced in the frame will be proportional to

Options:

A) $ \frac{1}{x^{2}} $

B) $ \frac{1}{{{(2x-a)}^{2}}} $

C) $ \frac{1}{{{(2x+a)}^{2}}} $

D) $ \frac{1}{(2x+a)(2x+a)} $

Show Answer

Answer:

Correct Answer: D

Solution:

Potential difference across PQ is $ V _{P}-V _{Q}=B _1(a)v=\frac{{\mu _0}I}{2\pi ( x-\frac{a}{2} )}av $

Potential difference across side RS of frame is
$ V _{S}-V _{R}=B _2(a)v=\frac{{\mu _0}I}{2\pi ( x+\frac{a}{2} )}av $

Hence, the net potential difference in the loop will be
$ V _{net}=(V _{P}-V _{Q})-(V _{S}-V _{R}) $ $ =\frac{{\mu _0}iav}{2\pi }[ \frac{1}{( x-\frac{a}{2} )}-\frac{1}{( x+\frac{a}{2} )} ] $ $ =\frac{{\mu _0}iav}{2\pi }( \frac{a}{( x-\frac{a}{2} )( x+\frac{a}{2} )} ) $

Thus $ V _{net}\propto \frac{1}{(2x-a)(2x+a)} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें