Neet Solved Paper 2015 Question 36

Question: Two identical thin plano-convex glass lenses (refractive index 1.5) each having radius of curvature of 20 cm are placed wait their convex surfaces in contact at the centre. The intervening space is filled with oil of refractive index 1.7 The focal length of the combination is

Options:

A) $ -20,cm $

B) $ -25,cm $

C) $ -50cm $

D) $ 50cm $

Show Answer

Answer:

Correct Answer: C

Solution:

Given $ {\mu _g}=1.5 $ $ {\mu _{oil}},=1.7 $ $ R=20cm $

From Lens Maker’s formula for the piano convex lens $ \frac{1}{f}=(\mu -1)[ \frac{1}{R _1}-\frac{1}{R _2} ] $

Here, $ R _1=R $ and for plane surface $ R _2=\infty $

$ \therefore $ $ \frac{1}{f _{lens}}=(1.5-1)( \frac{1}{R}-0 ) $

$ \Rightarrow $ $ \frac{1}{f _{lens}},=\frac{0.5}{R} $

When the intervening medium is filled with oil, then focal length of the concave lens formed by the oil

$ \frac{1}{{f _{concave}}}=(17-1)-( -\frac{1}{R}-\frac{1}{R} ) $ $ =-0.7\times \frac{2}{R}=\frac{-14}{R} $

Here, we have two concave surfaces So.

$ \frac{1}{f _{eq}}=2\times \frac{1}{f}+\frac{1}{f} $ $ =2\times \frac{0.5}{R}+( \frac{-14}{R} )=\frac{1}{R}-\frac{14}{R}=-\frac{0.4}{R} $

$ \therefore $ $ f _{eq}=-\frac{R}{0.4}=-\frac{20}{0.4}=-50cm $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें