Neet Solved Paper 2015 Question 5

Question: A block A of mass $ m _1 $ rests on a horizontal table. A light string connected to it passes over a frictionless pulley at the edge of table and from its other end another block B of mass $ m _2 $ is suspended. The coefficient of kinetic friction between the block and the table is $ {\mu_k} $ . When the block A is sliding on the table, the tension in the string is

Options:

A) $ \frac{(m _2+{\mu_k}m _1)g}{(m _1+m _2)} $

B) $ \frac{(m _2+{\mu_k}m _1)g}{(m _1+m _2)} $

C) $ \frac{m _1,m _2(1+{\mu_k})g}{(m _1+m _2)} $

D) $ \frac{m _1m _2(1-{\mu_k})g}{(m _1+m _2)} $

Show Answer

Answer:

Correct Answer: C

Solution:

FED of block A, $ T=m _1a=f _{k}, $ ..(i)

FBD of block B $ m _2g-T=m _2a $ …(ii)

Adding Eqs. (i) and (ii), we get $ m _2g,-m _1a,=m _2a,+f _{k} $

Þ $ m _2g,-m _1a,=m _2a,+{\mu_k},m _1g $

$ \Rightarrow ,a=\frac{( m _2-{\mu_k}m _1 )g}{m _1+m _2} $

From Eq. (ii), $ T=m _2(g-a) $ $ =m _2,[ 1-\frac{(m _2-{\mu_k}m _1)}{m _1+m _2} ]g $ $ T=\frac{m _1m _2,(1+{\mu_k})}{m _1+m _2}g $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें