Neet Solved Paper 2015 Question 9

Question: Two particles of masses $ m _1,m _2 $ move with initial velocities $ u _1 $ and $ u _2 $ . On collision, one of the particles get excited to higher level, after absorbing energy $ \varepsilon $ . If final velocities of particles be $ v _1 $ and $ v _2, $ then we must have

Options:

A) $ m_1^{2}u _1+m_2^{2}u _2-\varepsilon =m_1^{2}v _1+m_2^{2}v _2 $

B) $ \frac{1}{2}m _1u_1^{2}+\frac{1}{2}m _2u_2^{2}=\frac{1}{2}m _1v_1^{2}+\frac{1}{2}m _2v_2^{2}-\varepsilon $

C) $ \frac{1}{2}m _1u_1^{2}+\frac{1}{2}m _2u_2^{2}-\varepsilon =\frac{1}{2}m _1v_1^{2}+\frac{1}{2}m _2v_2^{2} $

D) $ \frac{1}{2}m_1^{2}u_1^{2}+\frac{1}{2}m_2^{2}u_2^{2}+\varepsilon =\frac{1}{2}m_1^{2}v_1^{2}+\frac{1}{2}m_2^{2}v_2^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Total initial energy = $ \frac{1}{2}m _1u_1^{2}+\frac{1}{2}m _2u_2^{2} $

Since, after collision one particle absorb energy $ \varepsilon $ .

$ \therefore $ Total final energy = $ \frac{1}{2}m _1v_1^{2}+\frac{1}{2}m _2v_1^{2}+\varepsilon $

From conservation of energy, $ \frac{1}{2}m _1u_1^{2}+\frac{1}{2}m _2u_2^{2}+\frac{1}{2}m _1v_1^{2}+\frac{1}{2}m _2v_2^{2}+\varepsilon $

$ \Rightarrow \frac{1}{2}m _1u_1^{2}+\frac{1}{2}m _2u_2^{2}-\varepsilon $ $ =\frac{1}{2}m _1v_1^{2}+\frac{1}{2}m _2v_2^{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें