NEET Solved Paper 2016 Question 18

Question: The intensity at the maximum in a Young’s double slit experiment is $ {I_0}\text{.} $ Distance between two slits is $ d=5\lambda , $ where $ \lambda $ the wavelength of light is used in the experiment. What will be the intensity in front of one of the slits on the screen placed at a distance D = 10 d?

Options:

A) $ I _0 $

B) $ \frac{I _0}{4} $

C) $ \frac{3}{4}I _0 $

D) v

Show Answer

Answer:

Correct Answer: D

Solution:

Path difference $ =S _2P-S _1P $ $ =\sqrt{D^{2}+d^{2}}-D $ $ =D( 1+\frac{1}{2}\frac{d^{2}}{D^{2}} )-D $ $ =D[ 1+\frac{d^{2}}{2D^{2}}-1 ]=\frac{d^{2}}{2D} $ $ \Delta x=\frac{d^{2}}{2\times 10d}=\frac{d}{20}=\frac{5\lambda }{20}=\frac{\lambda }{4} $ $ \Delta ,o|,=\frac{2\pi }{\lambda }.\frac{\lambda }{4}=\frac{\lambda }{2} $

So, intensity at the desired point is $ I=I _0{{\cos }^{2}}\frac{\text{o }|}{2}=I _0{{\cos }^{2}}\frac{\pi }{4}=\frac{I _0}{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें