NEET Solved Paper 2018 Question 32

Question: The solubility of $ BaS{O_4} $ in water is $ 2\text{.42 }\times\text{ 1}{0^{\text{–3}}}g{L^{\text{-1}}} $ at 298 K. The value of its solubility product $ \text{(}{K _{sp}}\text{)} $ will be (Given molar mass of $ BaS{O_4}\text{=233 g mo}{l^{\text{–1}}} $ )[NEET - 2018]

Options:

A) $ 1\text{.08 }\times\text{ 1}{0^{\text{–14}}}\text{ mol 2}{L^{\text{–2}}} $

B) $ 1\text{.08 }\times\text{ 1}{0^{\text{–12}}}mo{l^{2}}{L^{\text{–2}}} $

C) $ 1\text{.08 }\times\text{ 1}{0^{\text{–10}}}mo{l^{2}}{L^{\text{–2}}} $

D) $ 1\text{.08 }\times\text{ 1}{0^{\text{–8}}}mo{l^{2}}{L^{\text{–2}}} $

Show Answer

Answer:

Correct Answer: C

Solution:

Solubility of $ BaS{O_4}\text{,s=}\frac{2\text{.42 }\times\text{ 1}{0^{\text{-3}}}}{233}\text{(mol}{L^{\text{-1}}}\text{)} $

$ \text{=1}\text{.04 }\times\text{ 1}{0^{\text{-5}}}\text{(mol}\text{L-1)} $

$ BaS{O_4}(s)\underset{S}{\mathop{B{a^{2+}}}},(aq)+\underset{S}{\mathop{SO_4^{2-}}},(aq) $

$ {K _{sp}}\text{= }[\text{ B}{a^{\text{2+}}}]\text{ }[\text{ SO}_4^{\text{2-}}]\text{ =}{s^{2}} $

$ \text{=(1}\text{.04}\times 1{0^{-5}}{{)}^{2}} $

$ =1.08\times {10^{-10}}mol^{2}{L^{-2}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें