NEET Solved Paper 2018 Question 44

Question: Iron exhibits bcc structure at room temperature. Above $ \text{900 }{}^\circ\text{ C} $ , it transforms to fcc structure. The ratio of density of iron at room temperature to that at $ \text{900 }{}^\circ\text{ C} $ (assuming molar mass and atomic radii of iron remains constant with temperature) is [NEET - 2018]

Options:

A) $ \frac{3\sqrt{3}}{4\sqrt{2}} $

B) $ \frac{4\sqrt{3}}{3\sqrt{2}} $

C) $ \frac{\sqrt{3}}{\sqrt{2}} $

D) $ \frac{1}{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

For BCC lattice: $ Z=2,a=\frac{4r}{\sqrt{3}} $ For FCC lattice: $ \text{Z=4, a=2}\sqrt{2}r $

$ \therefore \frac{{d _{25{}^\circ C}}}{{d _{900{}^\circ C}}}=\frac{{{( \frac{ZM}{N _{A}a^{3}} )} _{BCC}}}{{{( \frac{ZM}{N _{A}a^{3}} )} _{FCC}}} $

$ =\frac{2}{4}{{( \frac{2\sqrt{2}r}{\frac{4r}{\sqrt{3}}} )}^{3}} $

$ =( \frac{3\sqrt{3}}{4\sqrt{2}} ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें