NEET Solved Paper 2018 Question 12

Question: An electron of mass m with an initial velocity $ \overrightarrow{{}v}=v _0\widehat{i}(v _0>0) $ enters an electric field $ \overrightarrow{{}E}\text{=-}{E_0}\widehat{i}\text{(}{E_0}\text{=} $ constant > 0) at t = 0. If $ {\lambda_0} $ is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is [NEET - 2018]

Options:

A) $ {\lambda_0}t $

B) $ {\lambda_0}( 1+\frac{eE _0}{mV _0}t ) $

C) $ \frac{{\lambda_0}}{( 1+\frac{eE _0}{mV _0}t )} $

D) $ {\lambda_0} $

Show Answer

Answer:

Correct Answer: C

Solution:

Initial de-Broglie wavelength $ {\lambda_0}\text{=}\frac{h}{m{V_0}} $ …(i)

Acceleration of electron $ a=\frac{eE _0}{m} $

Velocity after time t, $ \text{V=}( {V_0}\text{+}\frac{e{E_0}}{m}t ) $

So, $ \lambda \text{=}\frac{h}{mV}\text{=}\frac{h}{m( {V_0}\text{+}\frac{e{E_0}}{m}t )} $ $ =\frac{h}{mV _0[ 1+\frac{eE _0}{mV _0}t ]}=\frac{{\lambda_0}}{[ 1+\frac{eE _0}{mV _0}t ]} $ …(ii)

Divide (ii) by (i), $ \lambda =\frac{{\lambda_0}}{[ 1+\frac{eE _0}{mV _0}t ]} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें