Circular Motion

Average Angular Velocity:

$\omega_{av} = \frac{\Delta \theta}{\Delta t}$

Instantaneous Angular Velocity:

$\omega = \frac{d\theta}{dt}$

Average angular acceleration: $\alpha_{av} = \frac{\Delta \omega}{\Delta t}$
Instantaneous Angular Acceleration:

$\alpha = \frac{d\omega}{dt} = \omega \frac{d\omega}{d\theta}$

Relation Between Speed And Angular Velocity:

$v = r\omega$

and $\vec{v} = \vec{\omega} \times \vec{r}$

Tangential Acceleration (Rate Of Change Of Speed):

$a_t = r \frac{d\omega}{dt} = \omega \frac{dr}{dt}$

Radial Or Normal Or Centripetal Acceleration:

$a_r = \frac{v^2}{r} = \omega^2 r$

Total Acceleration:

$\vec{a} = \vec{a}_t + \vec{a}_r \Rightarrow a = \sqrt{a_t^2 + a_r^2}$

Angular Acceleration:

$\vec{\alpha} = \frac{d\vec{\omega}}{dt} \quad \text{(Non-uniform circular motion)}$

Radius Of Curvature:

$R = \frac{v^2}{a_{\perp}} = \frac{mv^2}{F_{\perp}}$

Normal Reaction Of Road On A Concave Bridge:

$N=m g \cos \theta+\frac{m v^2}{r}$

Normal Reaction On A Convex Bridge:

$N=m g \cos \theta-\frac{m v^2}{r}$

Skidding Of Vehicle On A Level Road:

$v_{\text{safe}} \leq \sqrt{\mu gr}$

Skidding Of An Object On A Rotating Platform:

$\omega_{\max} = \sqrt{\frac{\mu g}{r}}$

Bending Of Cyclist:

$\tan \theta = \frac{v^2}{rg}$

Banking Of Road Without Friction:

$\tan \theta = \frac{v^2}{rg}$

Banking Of Road With Friction:

$\frac{v^2}{rg} = \frac{\mu + \tan \theta}{1 - \mu \tan \theta}$

Maximum And Minimum Safe Speed On A Banked Frictional Road:

$V_{\max} = \left[\frac{rg(\mu + \tan \theta)}{(1 -\mu \tan \theta)}\right]^{1/2}$

$V_{\min} = \left[\frac{rg(\tan \theta -\mu)}{(1 + \mu \tan \theta)}\right]^{1/2}$

Centrifugal Force (Pseudo Force):

$f = m\omega^2 r$

It acts outwards when the particle itself is taken as a frame.

Effect Of Earth’s Rotation On Apparent Weight:

$N = mg - mR\omega^2 \cos^2 \theta,$

where $\theta$ is the latitude at a place.

Vertical Circle:

Various quantities for a critical condition in a vertical loop at different positions.

Conical pendulum:

$T \cos \theta = mg$

$T \sin \theta = m\omega^2 r$

Time period: $T = \sqrt{\frac{2\pi L \cos \theta}{g}}$

Relations among angular variables:

Initial angular velocity: $\omega_0$

$\omega = \omega_0 + \alpha t$

$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$

$\omega^2 = \omega_0^2 + 2 \alpha \theta$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें